IEEE Std 802.11i™-2004

[Amendment to IEEE Std 802.11™, 1999 Edition (Reaff 2003)
as amended by

IEEE Stds 802.11a™-1999, 802.11b™-1999,
802.11b™-1999/Cor 1-2001, 802.11d™-2001,
802.11g™-2003, and 802.11h™-2003]

802.111™

IEEE Standard for
Information technology—
Telecommunications and information
exchange between systems—
Local and metropolitan area networks—
Specific requirements

Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications

Amendment 6: Medium Access Control (MAC)
Security Enhancements

LLULUULELEEEEEER LTI TR

IEEE Computer Society

Sponsored by the
LAN/MAN Standards Committee

This amendment is an approved IEEE
Standard. It will be incorporated into the
base standard in a future edition.

Print: SH95248
PDF: S$S95248
3 Park Avenue, New York, NY 10016-5997, USA

IEEE Std 802.11i™-2004

[Amendment to IEEE Std 802.11™, 1999 Edition (Reaff 2003)
as amended by IEEE Stds 802.11a™-1999, 802.11b™-1999,
802.11b™-1999/Cor 1-2001, 802.11d™-2001,
802.11g™-2003, and 802.11h™-2003]

IEEE Standard for
Information technology—

Telecommunications and information
exchange between systems—

Local and metropolitan area networks—
Specific requirements

Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications

Amendment 6: Medium Access Control
(MAC) Security Enhancements

Sponsor

LAN/MAN Committee
of the

IEEE Computer Society

Approved 24 June 2004
IEEE-SA Standards Board

Abstract: Security mechanisms for IEEE 802.11 are defined in this amendment, which includes a
definition of WEP for backward compatibility with the original standard, IEEE Std 802.11, 1999 Edi-
tion. This amendment defines TKIP and CCMP, which provide more robust data protection mech-
anisms than WEP affords. It introduces the concept of a security association into IEEE 802.11 and
defines security association management protocols called the 4-Way Handshake and the Group
Key Handshake. Also, it specifies how IEEE 802.1X may be utilized by IEEE 802.11 LANSs to effect
authentication.

Keywords: AES, authentication, CCM, CCMP, confidentiality, countermeasures, data authenticity,
EAPOL-Key, 4-Way Handshake, Group Key Handshake, IEEE 802.1X, key management, key mix-

ing, Michael, RC4, replay protection, robust security network, RSN, security, security association,
TKIP, WEP

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2004 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 23 July 2004. Printed in the United States of America.

IEEE and 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and
Electronics Engineers, Incorporated.

Print: ISBN 0-7381-4073-2 SH95248
PDF: ISBN 0-7381-4074-0 $895248

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the
IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus develop-
ment process, approved by the American National Standards Institute, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve with-
out compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus devel-
opment process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained
in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other dam-
age, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting
from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that
the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market,
or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the
time a standard is approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revi-
sion or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude
that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check
to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a com-
petent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare
appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its soci-
eties and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in
those cases where the matter has previously received formal consideration. At lectures, symposia, seminars, or educational
courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered
the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with
IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331

Piscataway, NJ 08855-1331USA

NOTE—Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the exist-
ence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying
patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal valid-
ity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive,
Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational
classroom use can also be obtained through the Copyright Clearance Center.

Introduction

[This introduction is not part of IEEE Std 802.11i™-2004, IEEE Standard for Information
Technology—Telecommunications and Information Exchange Between Systems—Local and
Metropolitan Area Networks—Specific Requirements—Part 11: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications—Amendment 6: Medium Access Control (MAC)
Security Enhancements.)]

Enhanced security services and mechanisms for the IEEE 802.11 medium access control (MAC) beyond
those features and capabilities provided by the wired equivalent privacy (WEP) mechanism of the base stan-
dard, IEEE Std 802.11, 1999 Edition, are defined in this amendment. This amendment retains the WEP fea-
ture for purposes of backwards compatibility with existing IEEE 802.11 devices, but WEP is deprecated in
favor of the new security features provided in this amendment.

Notice to users

Errata
Errata, if any, for this and all other standards can be accessed at the following URL: http:/

standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http:/standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying
patents or patent applications for which a license may be required to implement an IEEE standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its attention. A patent
holder or patent applicant has filed a statement of assurance that it will grant licenses under these rights
without compensation or under reasonable rates and nondiscriminatory, reasonable terms and conditions to
applicants desiring to obtain such licenses. The IEEE makes no representation as to the reasonableness of
rates, terms, and conditions of the license agreements offered by patent holders or patent applicants. Further
information may be obtained from the IEEE Standards Department.

Participants

At the time the draft of this amendment was sent to sponsor ballot, the IEEE 802.11 Working Group had the
following officers:

Stuart J. Kerry, Chair
Al Petrick and Harry Worstell, Vice-Chairs
Tim Godfrey, Secretary
Brian Mathews, Publicity Standing Committee

v Copyright © 2004 IEEE. All rights reserved.

Tan Teik-Kheong, Wireless Next Generation Standing Committee
Terry L. Cole, Editor

John Fakatselis, Chair Task Group e
Duncan Kitchen, Vice-Chair Task Group e
Sheung Li, Chair Task Group j
Richard Paine, Chair Task Group k
Bob O’Hara, Chair Task Group m
Bruce Kramer, Chair Task Group n

When the IEEE 802.11 Working Group approved this amendment, the Task Group I had the following
membership:

David Halasz, Chair
Jesse Walker, Editor
Frank Ciotti, Secretary

Osama Aboul-Magd Don Berry Rolf De Vegt
Tomoko Adachi Jan Biermann Javier del Prado Pavon
Jaemin Ahn Arnold Bilstad Georg Dickmann
Thomas Alexander Harry Bims Yoshiharu Doi
Areg Alimian Bjorn Bjerke Brett Douglas
Richard Allen Simon Black Simon Duggins
Keith Amann Jan Boer Baris Dundar
Dov Andelman William Brasier Bryan Dunn
Merwyn Andrade Jennifer Bray Roger Durand
Carl Andren Phillip Brownlee Eryk Dutkiewicz
David Andrus Alex Bugeja Mary DuVal
Butch Anton Alistair Buttar Yaror} Dycian
Hidenori Aoki Peter Cain Dennis Eaton
Tsuguhide Aoki Richard Cam Peter Ecclesine
Michimasa Aramaki Nancy Cam-Winget Jonathan Edney
Takashi Aramaki Bill Carney Bruce Edwards
William Arbaugh Pat Carson Natarajan Ekambaram
Lee Armstrong Broady Cash Jason Ellis

Larry Arnett Jayant Chande Darwin Engwer
Hiroshi Asai Kisoo Chang Jeff Erwin
Yusuke Asai Clint Chaplin Andrew Estrada
Arthur Astrin Ye Chen Christoph Euscher
Malik Audeh Hong Cheng Knut Evenseq
Geert Awater Greg Chesson John Fakatselis
Shahrnaz Azizi Aik Chindapol Lars Falk

Floyd Backes Sunghyun Choi Steve F gntaske
Jin-Seok Bae Won-Joon Choi Paul Feinberg
David Bagby Woo-Yong Choi /\?vle,x lliellrdman
Dennis Baker Yang-Seok Choi N elts lF eng
Ramanathan Balachander Per Christoffersson Mzstt?lrewe;?sscher
Jaiganesh Balakrishnan Simon Chung Wavne Fisher
Boyd Bangerter Ken Clements HelZna Flveare
John Barr Sean Coffey Brian Forzllg
Simon Barber Terry L. Cole Ruben Formoso
Farooq Bari Paul Congdon Sheila Frankel
Michael Barkway W. Steven Conner John Fuller
Kevin Barry Charles Cook James Gardner
Anuj Batra Kenneth Cook Atul Garg

Burak Baysal Mary Cramer Albert Garrett
Tomer Bentzion Steven Crowley Ramez Gerges
Mathilde Benveniste Nora Dabbous Noam Geri

Copyright © 2004 IEEE. All rights reserved.

vi

Vafa Ghazi
Monisha Ghosh
James Gilb

Jeffrey Gilbert
Rabinder Gill

Tim Godfrey
Wataru Gohda
Yuri Goldstein
Jim Goodman
Aviv Goren
Andrew Gowans
Rik Graulus
Gordon Gray
Evan Green
Patrick Green
Kerry Greer
Daqing Gu
Rajugopal Gubbi
Sam Guirguis
Srikanth Gummadi
Qiang Guo

Vivek Gupta
Herman Haisch
Steven Halford
Robert Hall

Neil Hamady
Mounir Hamdi
Christopher Hansen
Yasuo Harada
Daniel Harkins
Thomas Haslestad
Amer Hassan
Vann Hasty

James Hauser
Yutaka Hayakawa
Morihiko Hayashi
Haixiang He
Xiaoning He
Robert Heile
Frans Hermodsson
Dave Hetherington
Guido Hiertz
Garth Hillman
Christopher Hinsz
Jun Hirano

Mikael Hjelm
Jin-Meng Ho
Michael Hoghooghi
Allen Hollister
Keith Holt

Satoru Hori
William Horne
Srinath Hosur
Frank Howley
Yungping Hsu
Robert Huang
Dave Hudak
David Hunter
Syang-Myau Hwang
David Hytha
Muhammad Ikram
Daichi Imamura
Kimihiko Imamura
Yasuhiko Inoue

Katsumi Ishii
Stephen Jackson
Eric Jacobsen
Marc Jalfon
KyungHun Jang
Bruno Jechoux
Taehyun Jeon
Moo Ryong Jeong
Daniel Jiang
Kuniko Jimi
Walter Johnson
David Johnston
Jari Jokela

VK Jones

Bobby Jose
Tyan-Shu Jou
Carl Kain
Srinivas Kandala
You Sung Kang
Jeyhan Karaoguz
Kevin Karcz
Pankaj Karnik
Mika Kasslin
Dean Kawaguchi
Patrick Kelly
Richard Kennedy
Stuart Kerry
John Ketchum
Vytas Kezys
Andrew Khieu
Ryoji Kido
Tomohiro Kikuma
Byoung-Jo Kim
Dooseok Kim
Joonsuk Kim
Yongbum Kim
Yongsuk Kim
Young Kim
Youngsoo Kim
Wayne King
John Klein
Guenter Kleindl
Toshiya Kobashi
Keiichiro Koga
Lalit Kotecha
John Kowalski
Bruce Kraemer
Gopal Krishnan
Shuji Kubota
Thomas Kuehnel
Tomoaki Kumagai
Takushi Kunihiro
Thomas M. Kurihara
Denis Kuwahara
Joe Kwak

Paul Lambert
David Landeta
Jim Lansford
Colin Lanzl

Choi Law
Dongjun Lee
Insun Lee

Jae Hwa Lee
Marty Lefkowitz

Onno Letanche
Joseph Levy
Mike Lewis

Pen Li

Quinn Li

Sheung Li

Jie Liang

Wei Lih Lim
Yong Je Lim
Huashih Lin
Sheng Lin

Victor Lin
Stanley Ling
Der-Zheng Liu
I-Ru Liu

Yonghe Liu

Titus Lo

Peter Loc

Patrick Lopez
Hui-Ling Lou
Xiaolin Lu

Luke Ludeman
Yi-Jen Lung
Akira Maeki
Ravishankar Mahadevappa
Doug Makishima
Majid Malek
Rahul Malik
Jouni Malinen
Krishna Malladi
Stefan Mangold
Mahalingam Mani
Jonn Martell
Naotaka Maruyama
Paul Marzec
Brian Mathews
Yoichi Matsumoto
Sudheer Matta
Thomas Maufer
Conrad Maxwell
Stephen McCann
Kelly McClellan
Gary McCoy
William McFarland
Timothy McGovern
Bill MclIntosh
Justin McNew
Irina Medvedev
Pratik Mehta
Robert Meier
Graham Melvile
Klaus Meyer
Robert Miller
Partho Mishra
David Mitton
Kenichi Miyoshi
Rishi Mohindra
Peter Molnar

Leo Monteban
Michael Montemurro
Rondal Moore
Tim Moore
Anthony Morelli
Mike Moreton

Copyright © 2004 IEEE. All rights reserved.

Yuichi Morioka
Steven Morley
Robert Moskowitz
Joseph Mueller
Syed Mujtaba
Willem Mulder
Peter Murphy
Peter Murray
Andrew Myers
Andrew Myles
Yukimasa Nagai
Katsuyoshi Naka
Makoto Nakahara
Michiharu Nakamura
Seigo Nakao
Hiroyuki Nakase
Sanjiv Nanda
Ravi Narasimhan
Slobodan Nedic
Robert Neilsen
David Nelson
Dan Nemits

Chiu Ngo

Tuan Nguyen
Qiang Ni

Gunnar Nitsche
Erwin Noble
Tzvetan Novkov
Ivan Oakes

Kei Obara

Karen O'Donoghue
Hiroshi Oguma
Jongtaek Oh

Bob O'Hara
Sean O'Hara
Yoshihiro Ohtani
Chandra Olson
Timothy Olson
Hiroshi Ono
Peter Oomen
Lior Ophir
Satoshi Oyama
Richard Paine
Michael Paljug
Stephen Palm
Jong Ae Park
Jonghun Park
Joon Goo Park
Taegon Park
Steve Parker
Glenn Parsons
Vijay Patel
Eldad Perahia
Sebastien Perrot
Al Petrick

Joe Pitarresi

Leo Pluswick
Stephen Pope
James Portaro

Al Potter

Henry Ptasinski
Anuj Puri
Aleksandar Purkovic
Jim Raab

Copyright © 2004 IEEE. All rights reserved.

Ali Raissinia
Ajay Rajkumar
Noman Rangwala
Ivan Reede
Stanley Reible
Anthony Reid

Joe Repice
Edward Reuss
Valentine Rhodes
Maximilian Riegel
Edmund Ring
Carlos Rios
Stefan Rommer
Jon Rosdahl

John Sadowsky
Ali Sadri
Kazuyuki Sakoda
Shoji Sakurai
Kenichi Sakusabe
Hemanth Sampath
Sumeet Sandhu
Anil Sanwalka
Ryo Sawai

Tom Schaftnit
Brian Schreder
Sid Schrum

Erik Schylander
Michael Seals

Joe Sensendorf
N. Shankaranarayanan
Donald Shaver
Stephen Shellhammer
Tamara Shelton
Ian Sherlock
Matthew Sherman
Ming Sheu
Shusaku Shimada
Matthew Shoemake
William Shvodian
D. J. Shyy
Thomas Siep
Floyd Simpson
Manoneet Singh
Hasse Sinivaara
Efstratios (Stan) Skafidas
David Skellern
Roger Skidmore
Donald Sloan
Kevin Smart
David Smith
Yoram Solomon
V. Somayazulu
Amjad Soomro
Robert Soranno
Gary Spiess
William Spurgeon
Dorothy Stanley
William Steck
Greg Steele
Adrian Stephens
William Stevens
Carl Stevenson
Fred Stivers
Warren Strand

Paul Struhsaker
Michael Su

Hiroki Sugimoto
Abhaya Sumanasena
Qinfang Sun

SK Sung

Shravan Surineni
Hirokazu Tagiri
Masahiro Takagi
Mineo Takai
Katsumi Takaoka
Daisuke Takeda
Nir Tal

Tsuyoshi Tamaki
Pek-Yew Tan
Teik-Kheong Tan
Wai-Cheung Tang
Takuma Tanimoto
Henry Taylor
James Taylor

Carl Temme
Stephan ten Brink
John Terry
Timothy Thornton
Jerry Thrasher
James Tomcik
Allen Tsai

Jean Tsao

Chih Tsien

Tom Tsoulogiannis
Kwei Tu

David Tung
Sandra Turner
Mike Tzamaloukas
Marcos Tzannes
Yusuke Uchida
Takashi Ueda
Naoki Urano
Hidemi Usuba
Chandra Vaidyanathan
Hans Van Leeuwen
Richard van Leeuwen
Richard Van Nee
Nico van Waes
Allert van Zelst
Madan Venugopal
George Vlantis
Dennis Volpano
Tim Wakeley
Brad Wallace
Thierry Walrant
Vivek Wandile
Huaiyuan Wang
Stanley Wang
Christopher Ware
Fujio Watanabe
Mark Webster
Matthew Welborn
Bryan Wells

Filip Weytjens
Stephen Whitesell
Michael Wilhoyte
Michael Glenn Williams
Peter Williams

vii

Major contributions were received from the following individuals:

Richard Williams
James Wilson
Steven Wilson
Jack Winters

Jin Kue Wong
Timothy Wong
Patrick Worfolk

Bernard Aboba
Areg Alimian
Keith Amann
Merwyn Andrade
Arun Ayyagari
Butch Anton

Bob Beach

Simon Black
Simon Blake-Wilson
Nancy Cam-Winget
Clint Chaplin

Greg Chesson
Alan Chickinsky
Frank Ciotti
Donald Eastlake III
Jonathan Edney
Niels Ferguson
Aaron Friedman
Craig Goston
Larry Green
Daniel Harkins

Harry Worstell
Charles Wright
Gang Wu
Yang Xiao
James Yee
Jung Yee
Kazim Yildiz
Jijun Yin

Dan Hassett
Kevin Hayes
Russ Housley
Jin-Meng Ho
Dick Hubbard
Tony Jeffree
Hong Jiang
David Johnston
Asa Kalvade
Kevin Karcz
Paul Lambert
Marty Letkowitz
Onno Letanche
Jie Liang

Jouni Malinen
Thomas Maufer
Kelly McClellan
Bill Mclntosh
Graham Melville
Tim Moore

Leo Monteban

Kit Yong
Heejung Yu
Hon Yung
Erol Yurtkuran
Zhun Zhong
Glen Zorn
James Zyren

Mike Moreton
Robert Moskowitz
David Nelson
Bob O’Hara
Richard Paine
Henry Ptasinski
Ivan Reede
Carlos Rios

Phil Rogaway
Mike Sabin
Dan Simon
Doug Smith
Mike Sordi
Dorothy Stanley
Fred Stivers
Sandra Turner
Dennis Volpano
Doug Whiting
Albert Young
Glen Zorn
Arnoud Zwemmer

This project was balloted using individual balloting. The following members of the balloting committee
voted on this amendment. Balloters may have voted for approval, disapproval, or abstention.

viii

Tomoko Adachi
John Adams

Toru Aihara
James Allen
Keith Amann
Butch Anton
Eladio Arvelo
Colin Ayer

David Bagby
Daniel Bailey
John Barr

Les Baxter
Anader Benyamin-Seeyar
Barbara Bickham
Jan Boer

Gennaro Boggia
Gary Bourque

Ed Callaway

Lon Canaday
Edward Carley
Bill Carney

Clint Chaplin
Amalavoyal Chari
Brendon Chetwynd
Alan Chickinsky

Aik Chindapol
Keith Chow

Terry L. Cole
Christopher Cooke
Todor Cooklev
Todd Cooper

Javier del Prado Pavon

Guru Dutt Dhingra
Thomas Dineen
Lakshminath Dondeti
Vern Dubendorf
Sourav Dutta

Clint Early

Jonathan Edney

Carl Eklund

Michael Fischer
Michele Gammel
Corey Gates
Theodore Georgantas
Andrew Germano
Tim Godfrey

Jose Gutierrez

Chris Guy

David Halasz

Karen Halford

Steven Halford
Christopher Hansen
Robert Heile
Stuart Holoman
Russell Housley
Atsushi Ito
Peeya Iwagoshi
Tony Jeffree
David Johnston
Bobby Jose

Joe Juisai
Thomas M. Kurihara
Srinivas Kandala
Kevin Karcz
Pankaj Karnik
Michael Kelsen
Stuart Kerry
Brian Kiernan
Thomas Kolze
John Kowalski
Joe Kubler
Denis Kuwahara
William Lane
Colin Lanzl
John Lemon

Jie Liang

Copyright © 2004 IEEE. All rights reserved.

Jan-Ray Liao
Randolph Little
Gregory Luri
Ryan Madron
Peter Martini
Kelly McClellan
Michael Mclnnis
Ingolf Meier
George Miao
Yinghua Min
Apurva Mody
Leo Monteban
Mike Moreton
Robert Moskowitz
Oliver Muelhens
Andrew Myles
Paul Nikolich
Erwin Noble
Bob O’Hara
Satoshi Oyama
Leo Pluswick
Richard Paine

Stephen Palm
Roger Pandanda
Subbu Ponnuswamy
Albert Potter
Vikram Punj

Bijan Raahemi
Moshe Ran

Terry Richards
Maximilian Riegel
Calvin Roberts
David Rockwell
Mike Rudnick
Tom Siep

Thomas Sapiano
John Sarallo
Durga Satapathy
George She
Hiroyasu Shimizu
Akihiro Shimura
Matthew Shoemake
Gil Shultz

Yoram Solomon
Amjad Soomro
Kenneth Stanwood
Thomas Starai
Adrian Stephens
Carl Stevenson
Masahiro Takagi
Pek Yew Tan
Joseph Tardo
Jerry Thrasher
Jim Tomcik

Scott Valcourt
Richard van Leeuwen
Hung-yu Wei
Stephen Whitesell
Dave Willow
Harry Worstell
Shugong Xu

Jung Yee

Patrick Yu

Oren Yuen
Arnoud Zwemmer

When the IEEE-SA Standards Board approved this standard on 24 June 2004, it had the following

membership:

Chuck Adams

H. Stephen Berger
Mark D. Bowman
Joseph A. Bruder
Bob Davis

Roberto de Boisson
Julian Forster*
Arnold M. Greenspan

*Member Emeritus

Don Wright, Chair

Steve M. Mills, Vice Chair
Judith Gorman, Secretary

Mark S. Halpin
Raymond Hapeman
Richard J. Holleman
Richard H. Hulett
Lowell G. Johnson
Joseph L. Koepfinger*
Hermann Koch
Thomas J. McGean
Daleep C. Mohla

Paul Nikolich

T. W. Olsen
Ronald C. Petersen
Gary S. Robinson
Frank Stone
Malcolm V. Thaden
Doug Topping

Joe D. Watson

Also included are the following nonvoting IEEE-SA Standards Board liaisons:
Satish K. Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative
Alan Cookson, NIST Representative

Savoula Amanatidis
IEEE Standards Managing Editor

Copyright © 2004 IEEE. All rights reserved. X

Contents

1. OVEIVIBW ...ttt ettt ettt ettt et e et et e s e e bt e te e bt e st e s bt e et e eb e ee s et e emeeebeemteebeemeesbeemteabeensesbeenseeneenteene 1
1.2 PUIPOSE. c.eteeeiieiie ettt et e et e et et e e te et estteesbeestbeesbeesseesabeenseessseenseeesseenseessseenseensseanseenseesnsaenseensses 1

2. NOTMALIVE TETETEICES ... ceeentieititieie sttt ettt ettt st e bt et e e s et eae et e sbeeaeesbeennebeas 2
3. DIEEINILIONS ..eontiiieieeie ettt ettt ettt b et s bt et e bt et eb e en b e e bt e bt e st ebesaeenaeeneebeas 2
4. ADDIeviations and ACTOMYITIScc.eeiviiruierieriierteeteesieestesteesteeeseesseessseeseesssessseesseessseessesssessssessseensses 6
5. GENETAL AESCTIPLION ...eeviieiiieiieeieeiee st ettt et et et e e e eteeesteestaeesbeestaessseenseesssaasseenseesssaessaenseesnsenseens 8
5.1 General description of the architeCtUIe..........cccviiiierieriieieeeie ettt ve e 8

5.1.1 How wireless LAN systems are different...........ccccccuevvrerieniiiniienie e 8

5.1.1.4 Interaction with other IEEE 802® Iayerscccceeevievuierieiiieneeeieeieeeve e 8

5.1.1.5 Interaction with non-IEEE 802 protocols.........cccecuvrriierieeiiienieniienieeeieenenns 8

5.2 Components of the IEEE 802.11 archite€Cturec.ccccueevieerieiiieiieeieeieeseeeieesve e esieesnveeaeens 8

5.2.2 Distribution system (DS) CONCEPLSeerrierriiriiieiieriieetieree et esteeeteereesaeeaeeseesveenseens 8

5.2.2.2 RSN A ettt 8

5.3 Logical SErVICE INLETTACEScuveviieiiieeiieiiieeieeieeste et et e ete et e st eseessteebeessaeesseessbeesseessseesseenseens 9

5.3.1 Station SETVICE (SS)..uiiiiieiiieiieecieeiie it ettt st et e st eteesaeeteestaessseessaesnseesseessseenseenseens 9

5.4 OVEIVIEW Of the SEIVICES. .. ceruiiuiiiiiiieriietieie ettt ettt ettt at et et e et bt e seeesaesbeebaenbeeseenteene 9

5.4.2 Services that support the diStribution SEIVICEccvevvrerieeriiiriierie e eee e eveeaeens 9

5.4.2.2 ASSOCIALION ..c.ueiuiiiiiiiiiieitieiiet ettt ea ettt ettt st eaenaeas 9

5.4.2.3 ReEASSOCIALION ...c..eiuiiiiiiiitieieetiete ettt ettt ettt sttt st e e et saeenaesaeen 9

5.4.3 Access control and confidentiality €0ntreISEIVICESccvvevveriieriieeieeiiecieeieeree e 9

54.3.1 AUheNtCAtION c...eouiiiiiiiiiieiieieeeee ettt et 10

5.4.3.2 DeauthentiCation..........ccooeeieriirieniieieieeie sttt 11

54.3.3 PrivaeyConfidentiality.........ccceeeveeciienieeiiiesiie et 11

5434 Key Management.........ccooeeieiiirieniieienieeiiente ettt ete sttt 12

5.4.3.5 Data origin aUtheNtiCILYcveevveriiiiiieeieeieeeeeee et et eve e sene e e 12

54.3.6 Replay deteCtioncccuieuieeieeiieiieeie ettt et 12

5.6 Differences between ESS and IBSS LANS.....cc.oiiiiiiiiriiieititerie ettt 12

5.7 Message information contents that SUPPOTt the SEIVICEScccveeueeriiiiiiieiieiie e 13

5.7.5 PrivaeyConfidentialifyccceeieuierieerieeiiereesiiesee et esteesaeeteesaeereessaeenseenseessseenseenseas 13

5.7.6 AUthentiCAtiONcc.eoiiiiiiiiiiiiec et 13

5.7.77 DeauthentiCatiONcccueiuieiiriiieitiete ettt ettt st ettt sbe et esee b e 13

5.8 Reference MOlcc.oiiiiiiiiiiiiieeee ettt s 13

5.9 TEEE 802.11 and IEEE 802.13Xcuiiiiiiitieiieett ettt sttt ettt ettt 14

5.9.1 IEEE 802.11 usage of IEEE 802.1Xcccuiiiiiiiieiiiienieiieieceee e 14

5.9.2 Infrastructure functional model OVEIVIEW........ccceeiuiriiiiniiiiiniiieeee e 14

5.9.2.1 AKM operations With AS........cccciiiieiiiiiiieieeee et 14

5.9.2.2 Operations With PSKccooiiiiiiiiie e 17

5.9.3 IBSS functional model deSCIiPtionccuevviereeeiieiierie ettt eee e see e eeee e 17

5.9.3.1 KEY USAZE covvieiieeiieiieeiie et ette et etteeteeteeseaeereestaeeseeseessseenssessseensaesssennses 17

5.9.3.2 Sample IBSS 4-Way Handshakesccceovvevierciienieniiieiiecieceeee e 17

5.9.3.3 IBSSIEEE 802.1X EXample.......cccoeceeririeniiieiiiieeciieeieeeeeee e 19

5.9.4 Authenticator-to-AS ProtOCO]ccceeiiieriierieeiieree ettt e et eeebe e e e sebeesaeeeneas 19

5.9.5 PMEKSA CACRING ..cutiiiiieiieiie ettt ettt saeete et esaeenbeessbe e saessaesnseessneenss 20

6. MAC SEIVICE AETINTTION ..ottt sttt st ebe e e e eee 20
X Copyright © 2004 IEEE. All rights reserved.

6.1 OVEIVIEW OF MAC SEIVICES ...vvveieeiiiieeiiee e ettt ee e ettt e e eeetaeeeeeseeaareesseeaaeeesesessaseeeesasseeeeeessnnes 20

6.1.2 SECUIILY SEIVICES .veeuvieuieeeetieieiieeteeteeetesteetesttenteese e tesseeneesseeneeseeesseseeneenseeneanseeneeneeenes 20

6.1.4 MAC data service architeCturecooeeruerieieriieiere et 21

7. Frame fOIMALSooiiiiie ettt ettt et e e et e st et e ea et e s e ene et e eneeneeenes 22

7.1 MAC frame fOrMALS.......cooueiuiiiiitieiee ettt sttt et et seesee et e seeeneesaeeneesneeneeanean 22

713 Frame fIeldSoouoeeeiieiee e et 22

7.1.3.1 Frame Control fieldcoooiiiiiiieiiee e 22

7.2 Format of individual frame tYPeS.........eeoueiuerieiietieeeee et 23

7.2.2 DAt frAMES .. .eeeieeieiieeee ettt ettt ne et ne e ens 23

7.2.3 Management fTAmMES.........cccueruiriererieiteet ettt ettt et es et e e eae et nee e enes 23

7.2.3.1 Beacon frame format...........cccooieiiiiiiiiiieee e 23

7.2.3.4 Association Request frame formatccceeerieniiieninieecceeee e 24

7.2.3.6 Reassociation Request frame format...........cooceririeninieiineiceeeceee 24

7.2.3.9 Probe Response frame formatcccooeeiiiieiinieneneeeeee e 24

7.2.3.10 Authentication frame formatoceiirieiinieie e 24

7.3 Management frame body COMPONENLSccueruieiiiriiieieeie ettt 25

731 FIXCd fICLAS et 25

7.3.1.4 Capability Information field..........cocoeiiriiiiniiiieeee e 25

7.3.1.7 Reason Code field.........cooiriiiiiiiiieeee e 25

7.3.1.9 Status Code fieldooocoiieiiiieeeeeee e 26

7.3.2 Information ClemMENtSceiieiiruieiiieiieie ettt 26

7.3.2.25 RSN information element............cccoecuirieiiirieriinieeeeeeee e 27

8. N 11111 L7 TSRS 32
8.1 FIaMEWOTK ...ttt st ettt e ettt e s et eeaeeaesneeneeenean

8.1.1 Security methods

8.1.2 RSNA equipment and RSNA capabiliti€sccceevueririiniiieneiieeceeeeeece e 32

8.1.3 RSNA establiShMeNt.....c.cecvieiieiiiieie et e 32

8.1.4 RSNA assumptions and constraints (informative)...........cecceeeerereerieneeneneeeeceee e 34

8.2 Pre-RSNA security MethodSooueiuieiiiieieri ettt 34

8.2.1 Wired equivalent privacy (WEP).......ccooiiiiiiieee e 35

8.2.1.1 WEP OVEIVIEW ...ttt et s 35

8.2.1.2 WEP MPDU fOImaLtc..coueieiiiiiriiniiniriisieieseneeteeee et 35

8.2.1.3 WEP STALE .cveviieeerectcictceciee ettt sttt ettt e e 36

8.2.1.4 WEP ProCedUIESeeouieiieiieiieiieie ettt ettt 36

8.2.2 Pre-RSNA authentiCationcceceeieieririerieeiieieee ettt 38

8.2 2.1 OVEIVIEW ..etintieiiitieeetee ettt ettt st et ettt e st et e et e e e bt et e eaeeneesaeeeesaeensennean 38

8.2.2.2 Open System authenticationcceceerireerereeiereeieee e 38

8.2.2.3 Shared Key authentication............ceceveeiiiieeieniieeieeee e 39

8.3 RSNA data confidentiality protoCoLS.........cceoeririeiieiei et 43

L T8 B @ 1) 74 1) SRS 43

8.3.2 Temporal Key Integrity Protocol (TKIP)cccooiriiiiiiiiiieeeeeee e 43

8.3.2.1 TKIP OVEIVIEW ..eeeitiiieiieiienieetiente e nteetee e st e e et eteeseeeeeaeentesaeeeesaeensenneas 43

8.3.2.2 TKIP MPDU fOIMALScceeveruerueieieienieiietneeieeiene sttt v sre e 45

8.3.2.3 TKIP MIC.....ioiiiiiiiiiiiiiictctetee ettt ettt ettt s e 46

8.3.2.4 TKIP countermeasures ProCedUIES.........ceereeruerueeruerreeriesieeeenteeeeseeeneeneenneas 49

8.3.2.5 TKIP miXing fUNCLION ...c.eerviruieiiriieiieieeieie et 52

8.3.2.6 TKIP replay protection proCedurescceeeeruereeereereereeneeieneeeeeseeeeeneens 56

8.3.3 CTR with CBC-MAC Protocol (CCMP)........cccoiririirininiiiinieicieeeecieeneeeeenienaens 57

8.3.3.1 CCMP OVEIVIEW ..ttt ettt sttt sttt et ettt et e et entesaeeeesaeenneneas 57

8.3.3.2 CCMP MPDU fOIMaL.....ccveoueieieieiieiiiiniiniene ettt s saene 57

Copyright © 2004 IEEE. All rights reserved. X1

Xii

8.3.3.3 CCMP encapSulationccceeeerureierieeiiene ettt see e eeeneas 58

8.3.3.4 CCMP decapSulationccecueeieieiierieiieeieeiieie ettt 60

8.4 RSNA security association ManagemMent...........ceveeueereerteeierueeneereeeseessesseessesseesesseeneesseeneesseenees 62
8.4.1 SCCUIILY ASSOCIAtIONSuvieueitieteeieerteettenteet et etee e este et enee st eneeseeeseesseeneesseeneaseeneenseenes 62
8.4.1.1 Security association definitions...........cceevreererierenieeeeeee e 62

8.4.1.2 Security association life CyCleccoooieiiiieiiiiiieeeeee e 64

8.4.2 RSNA SCIECHION. ..ottt ettt ettt sttt ebe e sae s 66
8.4.3 RSNA policy selection in an ESS........coocooiiiiiiie e 66
8.4.3.1 TSN policy selection in an ESS ..., 67

8.4.4 RSNA policy selection in an IBSSooiiiiiiiiiiieeeeee e 67
8.4.4.1 TSN policy selection in an IBSSccoooiiiiiiiiiieeee e, 68

8.4.5 RSN management of the IEEE 802.1X Controlled Port..........cccooceeiirieiinieiieee 68
8.4.6 RSNA authentication in an ESSc.ccccooiiiiiinininiiiiccnnseceeeeeeeeeaes 68
8.4.6.1 Preauthentication and RSNA key managementccceceevvreenereenennen. 69

8.4.6.2 Cached PMKSAs and RSNA key management...........ccccceceveeneeneeneeneenee. 70

8.4.7 RSNA authentication in an IBSS........c.cccoiininiiininiiccceceeereseeeseene 70
8.4.8 RSNA key management in an ESS..........ccocoiiiiiiiiiiiee e 71
8.4.9 RSNA key management in an IBSScoooiiiiiiiii e 72
8.4.10 RSNA security association terminationeecueeeereeeiereeiereeeeenteeeeseeeneeseeeneeseeens 72
8.5 Keys and Key diStribULIONoo.eeiiiiieieiiieece ettt 73
8.5.1 KeY NICIarChyccueeuieiieeieieeee ettt st 73
B.5. 1.1 PREF ettt e 74

8.5.1.2 Pairwise key hierarchyccoecoiieiiiiiiieeeeee e 75

8.5.1.3 Group key hierarchycocovieieiiiieie e 76

8.5.2 EAPOL-KEY frames........ceiieuieiiiieriteiiesite ettt s 77
8.5.2.1 STAKey Handshake for STA-to-STA link security..........cccceceeveevereenennen. 84

8.5.2.2 EAPOL-Key frame NOtation.........cceceveeiereeierieeiiesieecesieeeeesee e esee e enees 84

8.5.3 4-Way HandshaKecc.oooiiiiiiii et 85
8.5.3.1 4-Way Handshake MeSSage 1cccoveriiiiniieiieieieeieeeeeee e 86

8.5.3.2 4-Way Handshake MeSSage 2cceveriiieriieiieiieieeieeee e 87

8.5.3.3 4-Way Handshake MeSSage 3cccoveriiiieieiieiieieeee e 87

8.5.3.4 4-Way Handshake MeSSage 4ccoveeiiierieiieiieieeeseee e 89

8.5.3.5 4-Way Handshake implementation considerations............cccccceeereeevenuennen. 89

8.5.3.6 Sample 4-Way Handshake (informative)cccoeeerenieiininiineeieeee, 90

8.5.3.7 4-Way Handshake analysis (informative)cccceeoeeeeenieieenineneeeeeenn 91

8.5.4 Group Key Handshake.........ccooiiiiiiiiiiieeee e e 92
8.5.4.1 Group Key Handshake Message 1cccooeevieiiriiniieienieeeeee e 93

8.5.4.2 Group Key Handshake MeSSage 2cccoveeieiiieiiniieierceeeee e 94

8.5.4.3 Group Key Handshake implementation considerations.............cccceeceeruenen. 94

8.5.4.4 Sample Group Key Handshake (informative)ccccovveiinieneneenenenen. 94

8.5.5 STAKey HandshaKecccooiiiiiiiiiieieee e 95
8.5.5.1 STAKey Request MESSAZEccvuviriiiniiriiiiieniieiteeteeee e 96

8.5.5.2 STAKEY MESSAZE 1 ..couiiiiiiiiiiiiiiieeieesiieetee ettt 96

8.5.5.3 STAKEY MESSAZE 2...uueiiuiiiiiiiieeniieeite sttt ettt 97

8.5.54 STAKey Message 1 and Message 2 to the initiating STAcccoocveierennee. 97

8.5.6 RSNA Supplicant key management state machine.............cccccevereerenieneneeneeeene 98
8.5.6.1 Supplicant state MAcChine Statesccererrierierieriieieeeeeeee e 98

8.5.6.2 Supplicant state machine variables............ccoooeererieiiniienineeeee e 99

8.5.6.3 Supplicant state machine procedures.............ccecerueerenierinieeneniere e 99

8.5.7 RSNA Authenticator key management state machine............cocecceveeverienenenciencnns 102
8.5.7.1 Authenticator state maching Statesccccecererereneneneenenerieenenennenen 105

8.5.7.2 Authenticator state machine variables..........c.ccccocevverininencnencinnecnenne. 106

8.5.7.3 Authenticator state machine procedures............cecererrererienerieeneeieienne 108

8.5.8 Nonce generation (InfOrmMative).........ccueeuiriererierieiiee ettt see e 108

Copyright © 2004 IEEE. All rights reserved.

8.6 Mapping EAPOL keys to IEEE 802.11 KEYS....eeoierieieriieierieeiesieeeeeeee e 108

8.6.1 Mapping PTK t0 TKIP KEYS ...cceeeuieiieuieiieieree ettt 108
8.6.2 Mapping GTK t0 TKIP KEYS ...c.eeieiiireieiieieie ettt 108
8.6.3 Mapping PTK t0 CCMP KEYScceiiieiiiiiiieie ettt 109
8.6.4 Mapping GTK t0 CCMP KEYS ...ccueeiiieeiiiieiierie ettt st 109
8.6.5 Mapping GTK t0 WEP-40 KEYS.....cceeieiirieeeieeiecieeeesee ettt 109
8.6.6 Mapping GTK t0 WEP-104 KEYS......ceouerieierieieieeiieee sttt 109

8.7 Per-frame PSeUAO-COARcoouiiiiiieie ettt ettt ettt s e e eneens 109
8.7.1 WEP frame pSeud0-COAEccceriiiiiriiiieieie ettt s 109
8.7.2 RSNA frame pSeUdO-COUEc.eoiiriiiiiiiieiieitiee ettt ns 111
8.7.2.1 Per-MSDU TX pseud0o-COAEc.erierurriiaiiriieriieiieieeee e 111

8.7.2.2 Per-MPDU TX pseud0o-COAEcuerieruiriieiiriieieeiieieeee e 112

8.7.2.3 Per-MPDU RX pseudo-codeccoeruiiuieiiriieiieiieieeeeree e 112

8.7.2.4 Per-MSDU RX pSeud0-codeccceeruiiuieiiniieiieiieieeeere e 113

10. Layer ManagemeEnt..........cocueiiiiiiieiiiiieerit ettt sttt ettt sbt e st b e ettt be e sae e e b e sate s 114
10.3 MLME SAP INEETTACE ..c.veveiiiiiieiieiieieeiieicrt sttt ettt st eveeaeenes 114
1032 SCAM ..ttt ettt ettt et sa et b e ettt ettt n e 114
10.3.2.2 MLME-SCAN.CONTIIM ..cueruiiiieieieieieteieeieeese sttt e 114

L0.3.6 ASSOCIALEuevetiiitirtetetetetet ettt ettt sttt ettt eae ettt sae st e st ebe et ebe e 114
10.3.6.1 MLME-ASSOCIATE.TEQUESLccverveuienreeeiiniinienientitereeeeeeeeeceeeeienie e 114

10.3.6.3 MLME-ASSOCIATE.INdICation.......cccccevveririmeneneieiereeeeeencneeeeneene 114

10.3.7 REASSOCIALE.vevititiieteieieeetet ettt sttt ettt ettt st be e 115
10.3.7.1 MLME-REASSOCIATE.TEQUEStccvervemreueeiiniiniinienienieneercrereeeeeieeeee 115

10.3.7.3 MLME-REASSOCIATE.INdication........cccocervimenereieieieeeeeencneeienenne 115

LO3.17 SEKEYS .ottt ettt ettt st et e sat e bttt e st ree e 116
10.3.17.1 MLME-SETKEY S.T€QUESE......coverterreieieieiieiinieneenteteteneeeeneereeeieerenie e 116

10.3.17.2 MLME-SETKEY S.CONTIIM...c.coceriniiriinieieieieeeeeeeeneneceeeeeeeeieeie e 117

LU BT B LS (115 =) £ TSRS 117
10.3.18.1 MLME-DELETEKEY S.T@qUESL.....c.ccceetrerirrinrenieniiierereeereeeenieeieniene 117

10.3.18.2 MLME-DELETEKEY S.CONfIrm....c..ccccoverieinininininenenicieeeeeeeeeene 118

10.3.19 MIC (Michael) failure @VENtcccovueeiieiieeieeriecie ettt esiee e seve e e e e 118
10.3.19.1 MLME-MICHAELMICFAILURE.Iindicationc..ccccoeeveeverueveerennenn 118

10.3.20 EAPOL....oiiiiiiieeeeetete ettt et sttt 119
10.3.20.1 MLME-EAPOL.TEQUESccuerviieieieiieiieiniintieenie st 119

10.3.20.2 MLME-EAPOL.CONFIIMcueoviieiiiiieieicieiinenc st 120

10.3.21 MLME-STAKEYESTABLISHEDcccoceotiiiiiiiiieiniiinincreeeeeeeeeeeeseeeevee 121
10.3.21.1 MLME-STAKEYESTABLISHED.indicationc..cccceeeveeverveeeenenncnn 121

10.3.22 SEtPTOIECLIONcviuiiititetetetet ettt ettt ettt eae ettt ee 121
10.3.22.1 MLME-SETPROTECTION.ITEQUESLc.eeveueerirriniiriiiereeeeeerereeceeeeieniene 121

10.3.22.2 MLME-SETPROTECTION.CONfIIMcoveuiriiniiniiniiieieieicreiececeienenee 122

10.3.23 MLME-PROTECTEDFRAMEDROPPEDcccccccoiiiiiniiirinienencrcreeeeeeeene 123
10.3.23.1 MLME- PROTECTEDFRAMEDROPPED.indication...........ccccccecueuennee. 123

11. MAC sublayer management SNtyccecereeiererriereeieteeeeseeee st eeeseeeeeeesseessesseeneeeseeneesneeneas 123
11.3 Association and reassOCIAtIONc.eteireruerteteteieteieettee et sttt ettt et ereeresae e enen 123
11.3.1 Authentication—originating STAccoiiiiiiiiee et 124
11.3.2 Authentication—destination STA........ccccceviririmineneniiiiieeeee e 124
11.3.3 Deauthentication—originating STAcccorieiiiieieiieereee e 124
11.3.4 Deauthentication—destination STAcccceviririnirinirieiceennenereeeeeeeeeeee 124

11.4 Association, reassociation, and diSASSOCIALIONcccuvvveeeieiurieeeieieeeeeeeeinreeeeeeenieeeeeesseeeeeeeas 125
11.4.1 STA assoCiation ProCEAUIES..........ceeruiruirierieiieiee ettt sttt st e eeesee s 125

Copyright © 2004 IEEE. All rights reserved. Xiil

11.4.2 AP ass0Ciation PrOCEAUIESceerueruieruietieiereeetesteeee st eeteste e e steesee et eeesneeneesneeneeeneas 125

11.4.3 STA reassociation ProCEAUIESccccveruiriereeiereetereeeeeesteeeeseeeeeseeeeesaeeneesseeeesneas 126

11.4.4 AP reassociation PrOCEAUIESccerueeruertieriereieierieseeseeeeeenteestesteeseeeeeneeneeseeeeesneeneens 126

11.4.5 STA disassociation PrOCEAUIESecueeuiererreiereieeesteeetesteeeteseeeeeseeeeesneeeesneeeeeneas 127

11.4.6 AP disassoCiation PrOCEAUIESc.eerueruierierieiereieieesteeeeeeteee et eee e eeesneeeeseeeeeeneas 127

Annex A (normative) Protocol Implementation Conformance Statements (PICS)...........ccoocvvoeienieinnnenn. 128
A.4 PICS proforma—IEEE Std 802.11, 1999 Editionccccocevveviecirinininenenecrceecenenen 128

YN Y N O o1 (o070) TSR 128

Annex C (normative) Formal description 0f MAC OPErationccceeierierierieieneeiesieeeesieeee e 130
C.3 State machines fOr MAC STAtIONSocueruerieriieieiieiere ettt 130

C.4 State machines for MAC APooiiiii et 130

Annex D (normative) ASN.1 encoding of the MAC and PHY MIB........c.cccoiiiiiiiiiii e 131
Annex E (informative) BiblIOGraphyccooiiiiiiiiiiee ettt 147
) B € <3 1<) 1 TSP RROPTRPRt 147

Annex H (informative) RSNA reference implementations and test VECIOTS.......ccevuverierierierieneneeieseeeane 148
H.1 TKIP temporal key mixing function reference implementation and test vector.............. 148

HoLT TESE VECLOTS eneiiiieiiiiiiieeiterite ettt ettt sttt et et st bee e 156

H.2 Michael reference implementation and teSt VECIOISovuerueeruerierieeiieiieiieresieeie e 157

H.2.1 MicChael teSt VECLOTS.ueeueeeiieieie ettt eee e 157

H.2.2 Sample code for Michael...........ccooiiiiiiiiiieiee e 158

H.3 PREF reference implementation and teSt VECTOTSceoveruierierieieneeie e 164

H.3.1 PRF 1eference COAeot 164

H.3.2 PREF tESt VECIOTS .c..eiiitiiiiieiiieiiteeie ettt ettt 165

H.4 Suggested pass-phrase-to-PSK mappingccccceevereeiinieienieiese e 165

3 07 3 B 013 (T 11T 5 (o) o USSR 165

H.42 Reference implementation............ceieriererieniieiee e 166

H.4.3 TESt VECLOTS eueeeiiiiiieiieeieeite ettt ettt st st sbe e 167

H.5 Suggestions for random number enerationccoeeeriereeienieieneeeee e 167

H.5.1 Software SAMPIINE......cceeieriiiieie ettt eee e 168

H.5.2 Hardware-assisted SOIUtIONccceririiiiriiiieiee e 169

H.6 Additional teSt VECTOTSccueiieieieiieiteeiieieet ettt ettt sttt et ene e e eesaeeneeseeneens 170

5 BT B [0 15 o) o ST PSPRR 170

H.6.2 WEP encapsulationc.cccoeiiiiiiieiieiee et 170

H.6.3 TKIP tESt VECLOT ...eoiiiiiiiiiiiiiieiieeie ettt ettt sttt s 171

H.6.4 CCMP LESt VECLOT ..uutieiiiiiiieiieeieeieeriteee ettt ettt ettt sbe e s e ne e 172

H.6.5 PREF St VECTOTS .c..eiitiiiiiiiiieiiteeieet ettt ettt 173

H.7 Key hierarchy test VECIOTS.ueiuieieiieieeet ettt 174

H.7.1 Pairwise Key deriVationccooceiieiiriieiieiieeeeee e 174

Xiv Copyright © 2004 IEEE. All rights reserved.

IEEE Standard for
Information technology—

Telecommunications and information
exchange between systems—

Local and metropolitan area networks—
Specific requirements

Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications

Amendment 6: Medium Access Control
(MAC) Security Enhancements

[This amendment is based on IEEE Std 802.11™, 1999 Edition (Reaff 2003), as amended by IEEE Stds
802.11a™-1999, 802.11b™-1999, 802.11b™-1999/Cor 1-2001, 802.11d™-2001, 802.11g™-2003, and
802.11h™-2003.]

NOTE—The editing instructions contained in this amendment define how to merge the material contained herein into
the existing base standard and its amendments to form the comprehensive standard.

The editing instructions are shown in bold italic. Four editing instructions are used: change, delete, insert, and replace.
Change is used to make small corrections in existing text or tables. The editing instruction specifies the location of the
change and describes what is being changed either by using strikethrengh (to remove old material) or underscore (to add
new material). Delete removes existing material. Insert adds new material without disturbing the existing material.
Insertions may require renumbering. If so, renumbering instructions are given in the editing instructions. Replace is used
to make large changes in existing text, subclauses, tables, or figures by removing existing material and replacing it with
new material. Editorial notes will not be carried over into future editions.

1. Overview

1.2 Purpose

Change the fifth bullet of 1.2 as follows:

— Describes the requirements and procedures to provide privaeyconfidentiality of user information
being transferred over the wireless medium (WM) and authentication of IEEE 802.11 conformant
devices.

End of changes to Clause 1.

Copyright © 2004 IEEE. All rights reserved. 1

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

2. Normative references

Insert the following references at the appropriate locations in Clause 2:
FIPS PUB 180-1-1995, Secure Hash Standard.!

FIPS PUB 197-2001, Advanced Encryption Standard (AES).

IEEE P802.1X™-REV, Draft Standard for Local and Metropolitan Area Networks: Port-Based Network
Access Control. >34

IETF RFC 1321, The MD5 Message-Digest Algorithm, April 1992.°

IETF RFC 1750, Randomness Recommendations for Security, December 1994.

IETF RFC 2104, HMAC: Keyed-Hashing for Message Authentication, February 1997.

IETF RFC 2202, Test Cases for HMAC-MD5 and HMAC-SHA-1, September 1997.

IETF RFC 3394, Advanced Encryption Standard (AES) Key Wrap Algorithm, September 2002.
IETF RFC 3610, Counter with CBC-MAC (CCM), September 2003.

IETF RFC 3748, Extensible Authentication Protocol (EAP), March 2004.

End of changes to Clause 2.

3. Definitions
Delete the definition “3.40 privacy.”
Change the definition for “wired equivalent privacy (WEP)” as follows:

3.49 wired equivalent privacy (WEP): The An optional cryptographic confidentiality algorithm specified
by IEEE 802.11 that may be used to provide data confidentiality that is subjectively equivalent to the confi-
dentiality of a wired local area network (LAN) medium that does not employ cryptographic techniques to

enhance privaey-confidentiality.

Insert the following definitions in alphabetical order into Clause 3, renumbering as necessary:

3.63 additional authentication data (AAD): Data that are not encrypted, but are cryptographically
protected.

'FIPS publications are available from the National Technical Information Service (NTIS), U. S. Dept. of Commerce, 5285 Port Royal
Road, Springfield, VA 22161 (http://www.ntis.org/).

2IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).

3The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.

“This IEEE standards project was not approved by the IEEE-SA Standards Board at the time this publication went to press. For infor-
mation about obtaining a draft, contact the IEEE.

SInternet RFCs are available from the Internet Engineering Task Force at http://www.ietf.org/.

2 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

3.64 authentication, authorization, and accounting (AAA) key: Key information that is jointly negotiated
between the Supplicant and the Authentication Server (AS). This key information is transported via a secure
channel from the AS to the Authenticator. The pairwise master key (PMK) may be derived from the AAA
key.

3.65 authentication and key management (AKM) suite: A set of AKM suite selectors.

3.66 Authentication Server (AS): An entity that provides an authentication service to an Authenticator.
This service determines, from the credentials provided by the Supplicant, whether the Supplicant is autho-
rized to access the services provided by the Authenticator. (IEEE P802. 1X-REV6)

3.67 Authenticator: An entity at one end of a point-to-point LAN segment that facilitates authentication of
the entity attached to the other end of that link. (IEEE P802.1X-REV)

3.68 Authenticator address (AA): The IEEE 802.1X Authenticator medium access control (MAC) address.
3.69 authorized: To be explicitly allowed.

3.70 big endian: The concept that, for a given multi-octet numeric representation, the most significant octet
has the lowest address.

3.71 cipher suite: A set of one or more algorithms, designed to provide data confidentiality, data authentic-
ity or integrity, and/or replay protection.

3.72 counter mode (CTR) with CBC-MAC [cipher-block chaining (CBC) with message authentication

code (MAC)] (CCM): A symmetric key block cipher mode providing confidentiality using CTR and data
origin authenticity using CBC-MAC.

NOTE—See IETF RFC 3610.

3.73 decapsulate: To recover an unprotected frame from a protected one.

3.74 decapsulation: The process of generating plaintext data by decapsulating an encapsulated frame.
3.75 EAPOL-Key confirmation key (KCK): A key used to integrity-check an EAPOL-Key frame.

3.76 EAPOL-Key encryption key (KEK): A key used to encrypt the Key Data field in an EAPOL-Key
frame.

3.77 encapsulate: To construct a protected frame from an unprotected frame.
3.78 encapsulation: The process of generating the cryptographic payload from the plaintext data. This com-
prises the cipher text as well as any associated cryptographic state required by the receiver of the data, e.g.,

initialization vectors (IVs), sequence numbers, message integrity codes (MICs), key identifiers.

3.79 4-Way Handshake: A pairwise key management protocol defined by this amendment. It confirms
mutual possession of a pairwise master key (PMK) by two parties and distributes a group temporal key
(GTK).

3.80 group: The entities in a wireless network, e.g., an access point (AP) and its associated stations (STAs),
or all the STAs in an independent basic service set (IBSS) network.

“Information on references can be found in Clause 2.

Copyright © 2004 IEEE. All rights reserved. 3

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

3.81 Group Key Handshake: A group key management protocol defined by this amendment. It is used
only to issue a new group temporal key (GTK) to peers with whom the local station (STA) has already
formed security associations.

3.82 group master key (GMK): An auxiliary key that may be used to derive a group temporal key (GTK).

3.83 group temporal key (GTK): A random value, assigned by the broadcast/multicast source, which is
used to protect broadcast/multicast medium access control (MAC) protocol data units (MPDUs) from that
source. The GTK may be derived from a group master key (GMK).

3.84 group temporal key security association (GTKSA): The context resulting from a successful group
temporal key (GTK) distribution exchange via either a Group Key Handshake or a 4-Way Handshake.

3.85 IEEE 802.1X authentication: Extensible Authentication Protocol (EAP) authentication transported by
the IEEE 802.1X protocol.

3.86 key counter: A 256-bit (32-octet) counter that is used in the pseudo-random function (PRF) to generate
initialization vectors (IVs). There is a single key counter per station (STA) that is global to that STA.

3.87 key data encapsulation (KDE): Format for data other than information elements in the EAPOL-Key
Data field.

3.88 key management service: A service to distribute and manage cryptographic keys within a robust secu-
rity network (RSN).

3.89 little endian: The concept that, for a given multi-octet numeric representation, the least significant
octet has the lowest address.

3.90 liveness: A demonstration that the peer is actually participating in this instance of communication.

3.91 message integrity code (MIC): A value generated by a symmetric key cryptographic function. If the
input data are changed, a new value cannot be correctly computed without knowledge of the symmetric key.
Thus, the secret key protects the input data from undetectable alteration. This is traditionally called a
message authentication code (MAC), but the acronym MAC is already reserved for another meaning in this
amendment.

3.92 Michael: The message integrity code (MIC) for the Temporal Key Integrity Protocol (TKIP).

3.93 nonce: A value that shall not be reused with a given key, including over all reinitializations of the sys-
tem through all time.

3.94 pairwise: Two entities that are associated with each other, e.g., an access point (AP) and an associated
station (STA), or a pair of STAs in an independent basic service set (IBSS) network. This term is used to
describe the key hierarchies for keys that are shared only between the two entities in a pairwise association.

3.95 pairwise master key (PMK): The highest order key used within this amendment. The PMK may be
derived from an Extensible Authentication Protocol (EAP) method or may be obtained directly from a pre-
shared key (PSK).

3.96 pairwise master key security association (PMKSA): The context resulting from a successful IEEE
802.1X authentication exchange between the peer and Authentication Server (AS) or from a preshared key
(PSK).

4 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

3.97 pairwise transient key (PTK): A value that is derived from the pairwise master key (PMK), Authenti-
cator address (AA), Supplicant address (SPA), Anthenticator nonce (ANonce), and Supplicant nonce
(SNonce) using the pseudo-random function (PRF) and that is split up into as many as five keys, i.e., tempo-
ral encryption key, two temporal message integrity code (MIC) keys, EAPOL-Key encryption key (KEK),
EAPOL-Key confirmation key (KCK).

3.98 pairwise transient key security association (PTKSA): The context resulting from a successful
4-Way Handshake exchange between the peer and Authenticator.

3.99 pass-phrase: A secret text string employed to corroborate the user’s identity.

3.100 per-frame encryption key: A unique encryption key constructed for each medium access control
(MAC) protocol data unit (MPDU), employed by some IEEE 802.11 security protocols.

3.101 per-frame sequence counter: For Temporal Key Integrity Protocol (TKIP), the counter that is used
as the nonce in the derivation of the per-frame encryption key. For CCM [counter mode (CTR) with cipher-
block chaining (CBC) with message authentication code (MAC)] Protocol (CCMP), the per-frame initializa-
tion vector (IV).

3.102 pre-robust security network association (pre-RSNA): The type of association used by a pair of sta-
tions (STAs) if the procedure for establishing authentication or association between them did not include the
4-Way Handshake.

3.103 pre-robust security network association (pre-RSNA) equipment: A device that is not able to cre-
ate robust security network associations (RSNAs).

3.104 preshared key (PSK): A static key that is distributed to the units in the system by a method outside
the scope of this amendment, always by some out-of-band means.

3.105 pseudo-random function (PRF): A function that hashes various inputs to derive a pseudo-random
value. To add liveness to the pseudo-random value, a nonce should be one of the inputs.

3.106 robust security network (RSN): A security network that allows only the creation of robust security
network associations (RSNAs). An RSN can be identified by the indication in the RSN Information Element
(IE) of Beacon frames that the group cipher suite specified is not wired equivalent privacy (WEP).

3.107 robust security network association (RSNA): The type of association used by a pair of stations
(STAs) if the procedure to establish authentication or association between them includes the 4-Way Hand-
shake. Note that the existence of a RSNA by a pair of devices does not of itself provide robust security.
Robust security is provided when all devices in the network use RSNAs.

3.108 robust-security-network-association- (RSNA-) capable equipment: A station (STA) that is able to
create RSNAs. Such a device can use pre-RSNAs because of configuration. Notice that RSNA-capable does
not imply full compliance with the RSNA Protocol Implementation Conformance Statement (PICS). A leg-
acy device that has been upgraded to support Temporal Key Integrity Protocol (TKIP) can be RSNA-
capable, but will not be compliant with the PICS if it does not also support CCM [counter mode (CTR) with
cipher-block chaining (CBC) with message authentication code (MAC)] Protocol (CCMP).

3.109 robust-security-network-association- (RSNA-) enabled equipment: A station (STA) when it is
RSNA-capable and dot 11RSNAEnabled is set to TRUE.

3.110 robust security network association (RSNA) key management: Key management that includes the
4-Way Handshake, the Group Key Handshake, and the STAKey Handshake.

Copyright © 2004 IEEE. All rights reserved. 5

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

3.111 security network: A basic service set (BSS) where the station (STA) starting the BSS provides infor-
mation about the security capabilities and configuration of the BSS by including the robust security network
(RSN) information element in Beacon frames.

3.112 selector: An item specifying a list constituent in an IEEE 802.11 Management Message information
element.

3.113 STAKey: A symmetric key used to protect direct station-to-station (STA-to-STA) communication in
an infrastructure basic service set (BSS).

3.114 STAKey Handshake: A STAKey key management protocol, used to issue a new STAKey to stations
(STAs) that have a pairwise transient key security association (PTKSA) with an access point (AP).

3.115 STAKey security association (STAKeySA): The security context for direct station-to-station (STA-
to-STA) communication in an infrastructure basic service set (BSS). A STAKeySA includes a STAKey.

3.116 Supplicant: An entity at one end of a point-to-point LAN segment that is being authenticated by an
Authenticator attached to the other end of that link. (IEEE P802.1X-REV)

3.117 Supplicant address (SPA): The Supplicant’s medium access control (MAC) address.
3.118 temporal encryption key: The portion of a pairwise transient key (PTK) or group temporal key
(GTK) used directly or indirectly to encrypt data in medium access control (MAC) protocol data units

(MPDUg).

3.119 temporal key: The combination of temporal encryption key and temporal message integrity code
(MIC) key.

3.120 temporal message integrity code (MIC) key: The portion of a transient key used to ensure the integ-
rity of medium access control (MAC) service data units (MSDUs) or MAC protocol data units (MPDUs).

3.121 transition security network (TSN): A security network that allows the creation of pre-robust secu-
rity network associations (pre-RSNAs) as well as RSNAs. A TSN can be identified by the indication in the
robust security network (RSN) information element of Beacon frames that the group cipher suite in use is

wired equivalent privacy (WEP).

End of changes to Clause 3.

4. Abbreviations and acronyms

Insert the following abbreviations in alphabetical order into Clause 4:

AA Authenticator address

AAA authentication, authorization, and accounting
AAD additional authentication data

AES advanced encryption standard

AKM authentication and key management

AKMP Authentication and Key Management Protocol
ANonce Authenticator nonce

ARP Address Resolution Protocol

AS Authentication Server

CBC cipher-block chaining

CBC-MAC cipher-block chaining with message authentication code

6 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004
CCM CTR with CBC-MAC

CCMP CTR with CBC-MAC Protocol

CTR counter mode

EAP Extensible Authentication Protocol (IETF RFC 3748)
EAPOL Extensible Authentication Protocol over LANs (IEEE P802.1X-REV)
GMK group master key

GNonce group nonce

GTK group temporal key

GTKSA group temporal key security association

ICMP Internet Control Message Protocol

KCK EAPOL-Key confirmation key

KDE key data encapsulation

KEK EAPOL-Key encryption key

LFSR linear feedback shift register

MIC message integrity code

NTP Network Time Protocol (IETF RFC 1305 [B12]7)
(0]0) organizationally unique identifier

PAE port access entity (IEEE P802.1X-REV)

PMK pairwise master key

PMKID pairwise master key identifier

PMKSA pairwise master key security association

PN packet number

PRF pseudo-random function

PRNG pseudo-random number generator

PSK preshared key

PTK pairwise transient key

PTKSA pairwise transient key security association

RADIUS remote authentication dial-in user service (IETF RFC 2865 [B14])
RSC broadcast/multicast transmit sequence counter

RSN robust security network

RSNA robust security network association

SNAP Sub-Network Access Protocol

SNonce Supplicant nonce

SPA Supplicant address

TKIP Temporal Key Integrity Protocol

TSC TKIP sequence counter

TSN transition security network

TTAK TKIP-mixed transmit address and key

UCT unconditional transfer

End of changes to Clause 4.

"The numbers in brackets correspond to the numbers of the bibliography in Annex E.

Copyright © 2004 IEEE. All rights reserved. 7

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

5. General description

5.1 General description of the architecture
5.1.1 How wireless LAN systems are different
5.1.1.4 Interaction with other IEEE 802° layers
Insert the following paragraph at the end of 5.1.1.4:

In a robust security network association (RSNA), IEEE 802.11 provides functions to protect data frames,
IEEE 802.1X provides authentication and a Controlled Port, and IEEE 802.11 and IEEE 802.1X collaborate
to provide key management. All stations (STAs) in an RSNA have a corresponding IEEE 802.1X entity that
handles these services. This amendment defines how an RSNA utilizes IEEE 802.1X to access these
services.

After 5.1.1.4, insert 5.1.1.5:
5.1.1.5 Interaction with non-IEEE 802 protocols

An RSNA utilizes non-IEEE 802 protocols for its authentication and key management (AKM) services.
Some of these protocols are defined by other standards organizations, such as the Internet Engineering Task
Force (IETF).

5.2 Components of the IEEE 802.11 architecture
5.2.2 Distribution system (DS) concepts

After 5.2.2.1, insert 5.2.2.2:

5.2.2.2 RSNA

An RSNA defines a number of security features in addition to wired equivalent privacy (WEP) and IEEE
802.11 authentication. These features include the following:

— Enhanced authentication mechanisms for STAs
— Key management algorithms
— Cryptographic key establishment

— An enhanced data encapsulation mechanism, called CTR [counter mode] with CBC-MAC [cipher-
block chaining (CBC) with message authentication code (MAC)] Protocol (CCMP), and, optionally,
Temporal Key Integrity Protocol (TKIP)

An RSNA relies on several components external to the IEEE 802.11 architecture.

The first component is an IEEE 802.1X port access entity (PAE). PAEs are present on all STAs in an RSNA
and control the forwarding of data to and from the medium access control (MAC). An access point (AP)
always implements an Authenticator PAE and implements the EAP Authenticator role, and a STA always
implements a Supplicant PAE and implements the Extensible Authentication Protocol (EAP) peer role. In an
independent basic service set (IBSS), each STA implements both an Authenticator PAE and a Supplicant
PAE and both the EAP Authenticator and EAP peer roles.

8 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

A second component is the Authentication Server (AS). The AS may authenticate the elements of the RSNA
itself, i.e., the non-AP STAs; and APs may provide material that the RSNA elements can use to authenticate
each other. The AS communicates through the IEEE 802.1X Authenticator with the IEEE 802.1X Suppli-
cant on each STA, enabling the STA to be authenticated to the AS and vice versa. An RSNA depends upon
the use of an EAP method that supports mutual authentication of the AS and the STA. In certain applica-
tions, the AS may be integrated into the same physical device as the AP, or into a STA in an IBSS.

5.3 Logical service interfaces
Change item g) in the list of architectural services in 5.3 as follows:

g) PrivaeyConfidentiality

5.3.1 Station service (SS)
Change item c) in the list of SSs in 5.3.1 as follows:

c) PrivaeyConfidentiality

5.4 Overview of the services
5.4.2 Services that support the distribution service

5.4.2.2 Association
Insert the following paragraph after the second paragraph of 5.4.2.2:

Within a robust security network (RSN), this is different. In an RSNA, the IEEE 802.1X Port determines
when to allow data traffic across an IEEE 802.11 link. A single IEEE 802.1X Port maps to one association,
and each association maps to an IEEE 802.1X Port. An IEEE 802.1X Port consists of an IEEE 802.1X Con-
trolled Port and an IEEE 802.1X Uncontrolled Port. The IEEE 802.1X Controlled Port is blocked from pass-
ing general data traffic between two STAs until an IEEE 802.1X authentication procedure completes
successfully over the IEEE 802.1X Uncontrolled Port. Once the AKM completes successfully, data protec-
tion is enabled to prevent unauthorized access, and the IEEE 802.1X Controlled Port unblocks to allow pro-
tected data traffic. IEEE 802.1X Supplicants and Authenticators exchange protocol information via the
IEEE 802.1X Uncontrolled Port. It is expected that most other protocol exchanges will make use of the
IEEE 802.1X Controlled Ports. However, a given protocol may need to bypass the authorization function
and make use of the IEEE 802.1X Uncontrolled Port.

NOTE—See IEEE P802.1X-REV for a discussion of Controlled Port and Uncontrolled Port.

5.4.2.3 Reassociation
Insert the following paragraph at the end of 5.4.2.3:

No facilities are provided to move an RSNA during reassociation. Therefore, the old RSNA will be deleted,
and a new RSNA will need to be constructed.

Change the title of 5.4.3 as follows:
5.4.3 Access control and confidentiality eentrelservices

Change the second paragraph of 5.4.3 as follows:

Copyright © 2004 IEEE. All rights reserved. 9

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Two services are provided to bring the IEEE 802.11 functionality in line with wired local area network
(LAN) assumptions: authentication and privaeyconfidentiality. Authentication is used instead of the wired
media physical connection. Privaey-Data confidentiality is used to provide the confidential aspects of closed
wired media.

Insert the following paragraphs at the end of 5.4.3:

In a wireless LAN (WLAN) that does not support RSNA, two services, authentication and confidentiality,
are defined. IEEE 802.11 authentication is used instead of the wired media physical connection. WEP
encryption was defined to provide the confidentiality aspects of closed wired media.

An RSNA uses the IEEE 802.1X authentication service along with TKIP and CCMP to provide access con-
trol. The IEEE 802.11 station management entity (SME) provides key management via an exchange of IEEE
802.1X EAPOL-Key frames. Confidentiality and data integrity are provided by RSN key management
together with the TKIP and CCMP.

5.4.3.1 Authentication
Replace the text of 5.4.3.1 with the following:

IEEE 802.11 authentication operates at the link level between IEEE 802.11 STAs. IEEE 802.11 does not
provide either end-to-end (message origin to message destination) or user-to-user authentication.

IEEE 802.11 attempts to control LAN access via the authentication service. IEEE 802.11 authentication is
an SS. This service may be used by all STAs to establish their identity to STAs with which they communi-
cate, in both extended service set (ESS) and IBSS networks. If a mutually acceptable level of authentication
has not been established between two STAs, an association shall not be established.

IEEE 802.11 defines two authentication methods: Open System authentication and Shared Key authentica-
tion. Open System authentication admits any STA to the DS. Shared Key authentication relies on WEP to
demonstrate knowledge of a WEP encryption key. The IEEE 802.11 authentication mechanism also allows
definition of new authentication methods.

An RSNA also supports authentication based on IEEE 802.1X, or preshared keys (PSKs). IEEE 802.1X
authentication utilizes the EAP to authenticate STAs and the AS with one another. This amendment does not
specify an EAP method that is mandatory to implement. See 8.4.4 for a description of the IEEE 802.1X
authentication and PSK usage within an IEEE 802.11 IBSS.

In an RSNA, IEEE 802.1X Supplicants and Authenticators exchange protocol information via the IEEE
802.1X Uncontrolled Port. The IEEE 802.1X Controlled Port is blocked from passing general data traffic
between two STAs until an IEEE 802.1X authentication procedure completes successfully over the IEEE
802.1X Uncontrolled Port.

The Open System authentication algorithm is used in both basic service set (BSS) and IBSS RSNAs,
although Open System authentication is optional in an RSNA IBSS. RSNA disallows the use of Shared Key
authentication.

Management information base (MIB) functions are provided in Annex D to support the standardized authen-
tication schemes.

A STA may be authenticated with many other STAs at any given instant.

10 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

5.4.3.2 Deauthentication
Change the text of 5.4.3.2 as follows:

The deauthentication service is invoked when an existing Open System or Shared Key authentication is to be
terminated. Deauthentication is an SS.

In an ESS, because authentication is a prerequisite for association, the act of deauthentication shall cause the
station to be disassociated. The deauthentication service may be invoked by either authenticated party (non-
AP STA or AP). Deauthentication is not a request; it is a notification. Deauthentication shall not be refused
by either party. When an AP sends a deauthentication notice to an associated STA, the association shall also
be terminated.

In an RSN ESS. Open System authentication is required. In an RSN ESS, deauthentication results in termi-

nation of any association for the deauthenticated station. It also results in the IEEE 802.1X Controlled Port
for that STA being disabled and deletes the pairwise transient key security association (PTKSA). The deau-

thentication notification is provided to IEEE 802.1X via the MAC layer.

In an RSNA, deauthentication also destroys any related PTKSA, group temporal key security association
(GTKSA), and STAKey security associations (STAKeySAs) that exist in the STA and closes the associated
IEEE 802.1X Controlled Port. If pairwise master key (PMK) caching is not enabled, deauthentication also
destroys the pairwise master key security association (PMKSA) from which the deleted PTKSA was
derived.

In an RSN IBSS, Open System authentication is optional, but a STA is required to recognize Deauthentica-

tion frames. Deauthentication results in the IEEE 802.1X Controlled Port for that STA being disabled and
deletes the PTKSA.

Change the title and text of 5.4.3.3 as follows:

5.4.3.3 PrivaeyConfidentiality

In a wired LAN, only those stations physically connected to the wire sray-hear can send or receive LAN traf-
fic. With a wireless shared medium, this is not the case. Any IEEE 802.11-compliant STA may-hear can
receive all like-PHY IEEE 802.11 traffic that is within range_and can transmit to any other IEEE 802.11
STA within range. Thus the connection of a single wireless link (without privaeyconfidentiality) to an exist-
ing wired LAN may seriously degrade the security level of the wired LAN.

To bring the funetionality security of the wireless LAN up to the level implicit in wired LAN design, IEEE
802.11 provides the ability to enerypt protect the contents of messages. This functionality is provided by the

privaeyconfidentiality service. Pri Confidentiality is an SS.

Copyright © 2004 IEEE. Al rights reserved. 11

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

IEEE 802.11 provides three cryptographic algorithms to protect data traffic: WEP, TKIP, and CCMP. WEP
and TKIP are based on the RC4% algorithm, and CCMP is based on the advanced encryption standard (AES).

A means is provided for STASs to select the algorithm(s) to be used for a given association.

The default privaeyconfidentiality state for all IEEE 802.11 STAs is “in the clear.” If the privaeyconfidenti-
ality service is not invoked, all messages shall be sent uﬂeﬂefyp’feéunprotected If thls default pohcy is net
unacceptable to e 355 §

entities—the sender, it shall not send data frames, and 1f the policy is unacceptable to the receiver, it shall dis-
card any received data frames. Hrenerypted-Unprotected data frames received at a station configured for
mandatory privaeyconfidentiality, as well as protectedenerypted data frames using a key not available at the
receiving station, are discarded without an indication to logical link control (LLC) (or without indication to
distribution services in the case of “To DS” frames received at an AP). These frames are acknowledged on
the WM [if received without frame check sequence (FCS) error] to avoid wasting WM bandwidth on retries.

After 5.4.3.3, insert 5.4.3.4 through 5.4.3.6:
5.4.3.4 Key management

The enhanced confidentiality, data authentication, and replay protection mechanisms require fresh crypto-
graphic keys. The procedures defined in this amendment provide fresh keys by means of protocols called the
4-Way Handshake and Group Key Handshake.

5.4.3.5 Data origin authenticity

The data origin authenticity mechanism defines a means by which a STA that receives a data frame can
determine which STA transmitted the MAC protocol data unit (MPDU). This feature is required in an
RSNA to prevent one STA from masquerading as a different STA. This mechanism is provided for STAs
that use CCMP or TKIP.

Data origin authenticity is only applicable to unicast data frames. The protocols do not guarantee data origin
authenticity for broadcast/multicast data frames, as this cannot be accomplished using symmetric keys and
public key methods are too computationally expensive.

5.4.3.6 Replay detection

The replay detection mechanism defines a means by which a STA that receives a data frame from another
STA can detect whether the data frame is an unauthorized retransmission. This mechanism is provided for
STAs that use CCMP or TKIP.

5.6 Differences between ESS and IBSS LANs
Insert the following paragraph at the end of 5.6:

In an IBSS, each STA must enforce its own security policy. In an ESS, an AP can enforce a uniform security
policy across all STAs.

8Details of the RC4 algorithm are available from RSA Security, Inc. Contact RSA for algorithm details and the uniform RC4 license
terms that RSA offers to anyone wishing to use RC4 for the purpose of implementing the IEEE 802.11 WEP option. If necessary, con-
tact the IEEE Standards Department Intellectual Property Rights Administrator for details on how to communicate with RSA.

12 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

5.7 Message information contents that support the services

Change the title and text of 5.7.5 as follows:

5.7.5 PrivasyConfidentiality

For a STA to invoke a the- WEP-privaey-confidentiality algorithm (as controlled by MLME-SETKEYS, see
Clause 10, or the related MIB attributes, see Clause 11), the privaey-confidentiality service eaunsesMPDY
eneryptien-selects the confidentiality algorithm and sets the WER-frame-headerProtected Frame bit appropri-
ately (see Clause 7).

5.7.6 Authentication
Change the first paragraph in 5.7.6 as follows:

For a STA to authenticate with another STA_using either Open System or Shared Key authentication, the
authentication service causes one or more authentication management frames to be exchanged. The exact
sequence of frames and their content are dependent on the authentication scheme invoked. For altboth of
these authentication schemes, the authentication algorithm is identified within the management frame body.

5.7.7 Deauthentication
Change the first paragraph in 5.7.7 as follows:

For a STA to invalidate an active authentication_that was established using Open System or Shared Key
authentication, the following message is sent:

5.8 Reference model

Replace Figure 11 with the following:

802.1X
Authenticator
[Supplicant
—— G
. MAC_SAP
Data Link RSNA Key
IA MAC Sublayer Management
Y MAC Subl Management
E ublayer 4=y Entity MLME_SAP
R
PHY_SAP MLME-PLME_SAP .
— G Statlon
Management
Physical PLCP Sublayer g Entity
L PMD_SAP PHY Sublayer
A — o Management PLME_SAP
E Entity
R PMD Sublayer guip

Figure 11—Portion of the ISO/IEC basic reference model covered in this standard

Copyright © 2004 IEEE. Al rights reserved. 13

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Insert the following paragraph at the end of 5.8:

There is an interface between the IEEE 802.1X Supplicant/Authenticator and the SME shown in Figure 11.
This interface is described in IEEE P802.1X-REV.

After 5.8, insert 5.9 through 5.9.5 and renumber the figures as necessary:

5.9 IEEE 802.11 and IEEE 802.1X

An RSNA relies on IEEE 802.1X to provide authentication services and uses the IEEE 802.11 key manage-
ment scheme defined in 8.5. The IEEE 802.1X access control mechanisms apply to the association between
a STA and an AP and to the relationship between the IBSS STA and STA peer. The AP’s SME performs the
Authenticator and, optionally, the Supplicant and AS roles. In an ESS, a non-AP STA’s SME performs the
Supplicant role. In an IBSS, a STA’s SME takes on both the Supplicant and Authenticator roles and may
take on the AS role.

5.9.1 IEEE 802.11 usage of IEEE 802.1X

IEEE 802.11 depends upon IEEE 802.1X to control the flow of MAC service data units (MSDUs) between
the DS and STAs by use of the IEEE 802.1X Controlled/Uncontrolled Port model. IEEE 802.1X authentica-
tion frames are transmitted in IEEE 802.11 data frames and passed via the IEEE 802.1X Uncontrolled Port.
The IEEE 802.1X Controlled Port is blocked from passing general data traffic between two STAs until an
IEEE 802.1X authentication procedure completes successfully over the IEEE 802.1X Uncontrolled Port. It
is the responsibility of both the Supplicant and the Authenticator to implement port blocking. Each associa-
tion between a pair of STAs creates a unique pair of IEEE 802.1X Ports, and authentication takes place rela-
tive to those ports alone.

IEEE 802.11 depends upon IEEE 802.1X and the 4-Way Handshake and Group Key Handshake, described
in Clause 8, to establish and change cryptographic keys. Keys are established after authentication has com-
pleted. Keys may change for a variety of reasons, including expiration of an IEEE 802.1X authentication
timer, key compromise, danger of compromise, or policy.

5.9.2 Infrastructure functional model overview

This subclause summarizes the system setup and operation of an RSN, in two cases: when an IEEE 802.1X
AS is used and when a PSK is used. For an ESS, the AP includes an Authenticator, and each associated STA
includes a Supplicant.

5.9.2.1 AKM operations with AS

The following AKM operations are carried out when an IEEE 802.1X AS is used:

a) Prior to any use of IEEE 802.1X, IEEE 802.11 assumes that the Authenticator and AS have estab-
lished a secure channel. The security of the channel between the Authenticator and the AS is outside
the scope of this amendment.

Authentication credentials must be distributed to the Supplicant and AS prior to association.

b) A STA discovers the AP’s security policy through passively monitoring Beacon frames or through
active probing (shown in Figure 11a). If IEEE 802.1X authentication is used, the EAP authentica-
tion process starts when the AP’s Authenticator sends the EAP-Request (shown in Figure 11b) or
the STA’s Supplicant sends the EAPOL-Start message. EAP authentication frames pass between the
Supplicant and AS via the Authenticator and Supplicant’s Uncontrolled Ports. This is shown in
Figure 11b.

14 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

c¢) The Supplicant and AS authenticate each other and generate a PMK. The PMK is sent from the AS
to the Authenticator over the secure channel. See Figure 11b.

STA AP STA

|EEE 802.11 Probe Reguest

-

- |IEEE 802.11 Probe Respaonse (Security Parameters)

|EEE 802.11 Open Systemn Authentication Reguest

-

- |IEEE 802 11 Open System Authentication Response

IEEE 80211 Association Request (Secunty F'arameters)._

|IEEE 80211 Association Response

Bl

|EEE 802 1 Controlled |EEE 802 1% Controlled
Part Blocked Port Blocked

Figure 11a—Establishing the IEEE 802.11 association

Supplicant Authenticator AS
802.1X EAP Request
-
802.1X EAP Response
> Access Request (EAP Request)
EAP Authentication Protocol >
Exchange
-t |
Accept / EAP Success /
Key Material
¢
802.1X EAP Success
-
IEEE 802.1X
Controlled Port

Blocked for STA

Figure 11b—IEEE 802.1X EAP authentication

A 4-Way Handshake utilizing EAPOL-Key frames is initiated by the Authenticator to do the following:
— Confirm that a live peer holds the PMK.
— Confirm that the PMK is current.

— Derive a fresh pairwise transient key (PTK) from the PMK.

Copyright © 2004 IEEE. Al rights reserved. 15

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

— Install the pairwise encryption and integrity keys into IEEE 802.11.

— Transport the group temporal key (GTK) and GTK sequence number from Authenticator to Suppli-

cant and install the GTK and GTK sequence number in the STA and, if not already installed, in the
AP.

— Confirm the cipher suite selection.

Upon successful completion of the 4-Way Handshake, the Authenticator and Supplicant have authenticated
each other; and the IEEE 802.1X Controlled Ports are unblocked to permit general data traffic. See
Figure 11c.

Supplicant Authenticator

Key (PMK) is Known Key (PMK) is Known

Generate SNonce Generate ANonce
P Message 1. EAPOL-Key(ANonce, Unicast)

Derive PTK

Message 2: EAPOL-Key(SNonce, Unicast, MIC)

'Y

Derive PTK
If needed
Generate GTK

<

gssage 3: EAPOL-Key(Install PTK, Unicast, MIC, Encrypted GTK))

Message 4: EAPOL-Key(Unicast, MIC)

Install PTK and GTK Install PTK

IEEE 802.1X Controlled Port
Unblocked

Figure 11c—Establishing pairwise and group keys

If the Authenticator later changes the GTK, it sends the new GTK and GTK sequence number to the Suppli-
cant using the Group Key Handshake to allow the Supplicant to continue to receive broadcast/multicast mes-

sages and, optionally, to transmit and receive unicast frames. EAPOL-Key frames are used to carry out this
exchange. See Figure 11d.

16 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Authenticator

Supplicant

Generate GTK
Encrypt GTH with PTK

Message 1. EAPDOL-KeviEncrypted GTK, Group, MIC)

Install GTH

Meszage 2: EAPOL-Key(Group, MIT)

Figure 11d—Delivery of subsequent group keys

5.9.2.2 Operations with PSK

The following AKM operations are carried out when the PMK is a PSK:

— A STA discovers the AP’s security policy through passively monitoring Beacon frames or through
active probing (shown in Figure 11a). A STA associates with an AP and negotiates a security policy.
The PMK is the PSK.

— The 4-Way Handshake using EAPOL-Key frames is used just as with IEEE 802.1X authentication,
when an AS is present. See Figure 11c.

— The GTK and GTK sequence number are sent from the Authenticator to the Supplicant just as in the
AS case. See Figure 11c and Figure 11d.

5.9.3 IBSS functional model description

This subclause summarizes the system setup and operation of an RSNA in an IBSS. An IBSS RSNA is spec-
ified in 8.4.7.

5.9.3.1 Key usage

In an IBSS, the unicast data frames between two STAs are protected with a pairwise key. The key is part of
the PTK, which is derived during a 4-Way Handshake.

In an IBSS, the broadcast/multicast data frames are protected by a key, e.g., named B1, that is generated by
the STA transmitting the broadcast/multicast frame. To allow other STAs to decrypt broadcast/multicast
frames, B1 must be sent to all the other STAs in the IBSS. B1 is sent in an EAPOL-Key frame, encrypted
under the EAPOL-Key encryption key (KEK) portion of the PTK, and protected from modification by the
EAPOL-Key confirmation key (KCK) portion of the PTK.

In an IBSS, a STA’s SME responds to Deauthentication frames from a STA by deleting the PTKSA associ-
ated with that STA.

5.9.3.2 Sample IBSS 4-Way Handshakes

In this example (see Figure 11e), there are three STAs: S1, S2, S3. The broadcast/multicast frames sent by
S1 are protected by B1; similarly B2 for S2, and B3 for S3.

Copyright © 2004 IEEE. Al rights reserved. 17

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS
51 52 53
Lt} -

4-Way Handshake (51 Inits)

A
y

4-Way HandsHake (51 Inits)

ey Nandshake (2 1nts) P

TWay Handohake (52 s ™

Sy Handehake (S TR ™

4-WWay HandsHake (53 Inits)

Figure 11e—Sample 4-Way Handshakes in an IBSS

For stations S2 and S3 to decrypt broadcast/multicast frames from S1, B1 must be sent to S2 and S3. This is
done using the 4-Way Handshake initially and using the Group Key Handshake for GTK updates.

The 4-Way Handshake from S1 to S2 allows S1 to send broadcast/multicast frames to S2, but does not allow
S2 to send broadcast/multicast frames to S1 because S2 has a different transmit GTK. Therefore, S2 needs to
initiate a 4-Way Handshake to S1 to allow S1 to decrypt S2’s broadcast/multicast frames. Similarly, S2 also
needs to initiate a 4-Way Handshake to S3 to enable S3 to receive broadcast/multicast messages from S2.

In a similar manner S3 needs to complete the 4-Way Handshake with S1 and S2 to deliver B3 to S1 and S2.

In this example, there are six 4-Way Handshakes. In general, N STA Supplicants require N(N-1) 4-Way
Handshakes.

NOTE—In principle the KCK and KEK from a single 4-Way Handshake can be used for the Group Key Handshake in
both directions, but using two 4-Way Handshakes means the Authenticator key state machine does not need to be differ-
ent between IBSS and ESS.’

The Group Key Handshake can be used to send the GTKs to the correct STAs. The 4-Way Handshake is
used to derive the pairwise key and to send the initial GTK. Because in an IBSS there are two 4-Way Hand-
shakes between any two STA Supplicants and Authenticators, the pairwise key used between any two STAs
is from the 4-Way Handshake initiated by the STA Authenticator with the higher MAC address (see 8.5.1
for the notion of address comparison). The KCK and KEK used for a Group Key Handshake are the KCK
and KEK derived by the 4-Way Handshake initiated by the same Authenticator that is initiating the Group
Key Handshake.

In an IBSS, a secure link exists between two stations when both 4-Way Handshakes have completed suc-
cessfully. The Supplicant and Authenticator 4-Way Handshake state machines interact so the IEEE 802.1X
variable portValid is not set until both 4-Way Handshakes complete.

If a fourth STA comes within range and its SME decides to initiate a security association with the three
peers, its Authenticator initiates 4-Way Handshakes with each of the other three STA Supplicants. Similarly,
the original three STA Authenticators in the IBSS need to initiate 4-Way Handshakes to the fourth STA

Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement this amendment.

18 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Supplicant. A STA learns that a peer STA is RSNA-enabled and the peer’s security policy (e.g., whether the
Authentication and Key Management Protocol (AKMP) is PSK or IEEE 802.1X authentication) from the
Beacon or Probe Response frame. The initiation may start for a number of reasons:

a) The fourth STA receives a Beacon or Probe Response frame from a MAC address with which it has
not completed a 4-Way Handshake.

b) A STA’s SME receives a MLME-PROTECTEDFRAMEDROPPED.indication primitive from a
MAC address with which it has not completed a 4-Way Handshake. This could be a multicast/broad-
cast data frame transmitted by any of the STAs. If the SME wants to set up a security association to
the peer STA, but does not know the security policy of the peer, it should send a Probe Request

frame to the peer STA to find its security policy before setting up a security association to the peer
STA.

¢) A STA’s SME receives Message 1 of the 4-Way Handshake sent to a STA because the initiator
received a broadcast data frame, Beacon frame, or Probe Response frame from that STA. If a STA
received a 4-Way Handshake, wants to set up a security association to the peer STA, but does not
know the security policy of the peer, it should send a Probe Request frame to the peer STA to find its
security policy before setting up a security association to the peer STA.

5.9.3.3 IBSS IEEE 802.1X Example

When IEEE 802.1X authentication is used, each STA will need to include an IEEE 802.1X Authenticator
and AS. A STA learns that a peer STA is RSNA-enabled and the peer’s security policy (e.g., whether the
AKMP is PSK or IEEE 802.1X authentication) from the Beacon or Probe Response frame.

Each STA’s Supplicant will send an EAPOL-Start message to every other station to which it wants to
authenticate, and each STA’s Authenticator will respond with the identity of the credential it wants to use.

The EAPOL-Start and EAP-Request/Identity messages are initiated when a protected data frame (indicated
via a MLME-PROTECTEDFRAMEDROPPED.indication primitive), an IEEE 802.1X message, Beacon
frame, or Probe Response frame is received from a MAC address with which the STA has not completed
IEEE 802.1X authentication. If the SME wants to set up a security association to the peer STA, but does not
know the security policy of the peer, it should send a Probe Request frame to the peer STA to find its secu-
rity policy before setting up a security association to the peer STA.

Although Figure 11f shows the two IEEE 802.1X exchanges serialized, they may occur interleaved.
5.9.4 Authenticator-to-AS protocol
The Authenticator-to-AS authentication definition is out of the scope of this amendment, but, to provide
security assurances, the protocol must support the following functions:
a) Mutual authentication between the Authenticator and AS

b) A channel for the Supplicant/AS authentication

c) The ability to pass the generated key from the AS to the Authenticator in a manner that provides
authentication of the key source, ensures integrity of the key transfer, and preserves confidentiality
of the key from all other parties

Suitable protocols include, but are not limited to, remote authentication dial-in user service (RADIUS)
(IETF RFC 2865 [B14]) and Diameter (IETF RFC 3588 [B15]).

Copyright © 2004 IEEE. Al rights reserved. 19

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS
S1 S2
EAPOL-Start

-
Request/Identity
-
EAP Authentication
- \
EAP Success
-
4-Way Handshake
- -
EAPOL-Start
-
Request/Identity
-1
EAP Authentication
-t} -
EAP Success
-
4-Way Handshake
- P

Figure 11f—Example using IEEE 802.1X authentication

5.9.5 PMKSA caching

The Authenticator and Supplicant may cache PMKSAs, which include the IEEE 802.1X state. A PMKSA
can be deleted from the cache for any reason and at any time.

The STA may supply a list of PMK or PSK key identifiers in the (Re)Association Request frame. Each key
identifier names a PMKSA; the PMKSA may contain a single PMK. The Authenticator specifies the
selected PMK or PSK key identifier in Message 1 of the 4-Way Handshake. The selection of the key identi-
fiers to be included within the (Re)Association Request frame and Message 1 of the 4-Way Handshake is out
of the scope of this amendment.

End of changes to Clause 5.

6. MAC service definition

6.1 Overview of MAC services

6.1.2 Security services

Change the text of 6.1.2 as follows:

Security services in IEEE 802.11 are provided by the authentication service and the WEP, TKIP, and CCMP
mechanisms. The scope of the security services provided is limited to station-to-station data exchange. The

privaey-confidentiality service offered by an IEEE 802.11 WEP, TKIP, and CCMP implementation is the
encryption of the MSDU. For the purposes of this standard, WEP, TKIP, and CCMP are is-viewed as a

20 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

logical services located within the MAC sublayer as shown in the reference model, Figure 11. Actual imple-
mentations of the WEP, TKIP, and CCMP services are transparent to the LLC and other layers above the
MAC sublayer.

The security services provided by WEP, TKIP, and CCMP in IEEE 802.11 are as follows:
a) Confidentiality;
b) Authentication; and

¢) Access control in conjunction with layer management.

During the authentication exchange, both parties A—and-B-exchange authentication information as described
in Clause 8.

The MAC sublayer security services provided by WEP, TKIP, and CCMP rely on information from non-
layer 2 management or system entities. Management entities communicate information to WEP through a
set of MIB attributes. Management entities communicate information to TKIP and CCMP through a set of

MAC sublayer management entity (MLME) interfaces and MIB attributes; in particular, the decision tree for
TKIP and CCMP defined in 8.7 is driven by MIB attributes.

After 6.1.3, insert 6.1.4 and renumber the figures as necessary:
6.1.4 MAC data service architecture

The MAC data plane architecture (i.e., processes that involve transport of all or part of an MSDU) is shown
in Figure 11g. During transmission, an MSDU goes through some or all of the following processes: frame
delivery deferral during power save mode, sequence number assignment, fragmentation, encryption, integ-
rity protection, and frame formatting. IEEE 802.1X may block the MSDU at the Controlled Port.

During reception, a received data frame goes through processes of MPDU header + cyclic redundancy code
(CRC) validation, duplicate removal, decryption, defragmentation, integrity checking, and replay detection.
The IEEE 802.1X Controlled/Uncontrolled Ports discard the MSDU if the Controlled Port is not enabled or
if the MSDU does not represent an IEEE 802.1X frame. TKIP and CCMP MPDU frame order enforcement
occurs after decryption, but prior to MSDU defragmentation; therefore, defragmentation will fail if MPDUs
arrive out of order.

Copyright © 2004 IEEE. Al rights reserved. 21

IEEE
Std 802.11i-2004

MSDU

End of changes to Clause 6.

Flow

IEEE802.1X
Controlled and
Uncontrolled Port
Filtering (optional)

LLC/SNAP

LOCAL AND METROPOLITAN AREA NETWORKS

MSDU
Flow

IEEER02.1X
Controlled and
Uncontrolled Port
Filtering (optional)

LLC/SNAP

IEEE 802.1X IEEE 802.1 MAC IEEE 802.1X

Controlled Port Relay Entity Controlled Port
Filtering (RSNA AP only) Filtering
(optional) (optional)

Intra BSS Relay (pre - RSNA AP only)

PS Defer Queuing
(AP or IBSS STA
only)

Sequence Number
Assignment

MSDU Integrity
Protection (optional)

Fragmentation

MPDU Encryption
and Integrity
(optional)

MPDU Header +
CRC

7. Frame formats

MSDU
Flow

Figure 11g—MAC data plane architecture

7.1 MAC frame formats

7.1.3 Frame fields

7.1.3.1 Frame Control field

Change the text of 7.1.3.1 as follows:

Replay Detection
(optional)

MSDU Integrity
Protection (optional)

Defragmentation

MPDU Decryption
and Integrity
(optional)

Duplicate Removal

MPDU Header +
CRC Validation

MSDU
Flow

The Frame Control field consists of the following subfields: Protocol Version, Type, Subtype, To DS, From
DS, More Fragments, Retry, Power Management, More Data, WiredEquivalentPrivaey(WEPR)-Protected

Frame, and Order. The format of the Frame Control field is illustrated in Figure 13.

22

Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Change Figure 13 as shown:

BO B1 B2 B3 B4 B7 B8 B9 B10 B11 B11 B13 B14 B15
Protocol To From More Pwr More WEPR
Version Type Subtype DS DS Frag Retry Mgt Data Protected Order
Frame

PP PP PP PP C—>

Bits : 2 2 4 1 1 1 1 1 1 1 1

Figure 13—Frame Control field

Change the title and text of 7.1.3.1.9 as follows:

7.1.3.1.9 WERProtected Frame field

The WEPR-Protected Frame field is 1 bit in length. #The Protected Frame field is set to 1 if the Frame Body
field contains information that has been processed by the-WEP-a cryptographic encapsulation algorithm.
The WEP-Protected Frame field is set to 1 only within data frames ef-type-Data-and within management
frames of type-Management;-subtype Authentication. The WHER-Protected Frame field is set to 0 in all other
frames. When the WHEP-bit-Protected Frame field is set to 1;-the Frame Bodyfieldis-expanded-as-defined-in
8:2-5 in a data frame, the Frame Body field is protected utilizing the cryptographic encapsulation algorithm
and expanded as defined in Clause 8. Only WEP is allowed as the cryptographic encapsulation algorithm for

management frames of subtype Authentication.

7.2 Format of individual frame types
7.2.2 Data frames

Change the first paragraph after the lettered list in 7.2.2 as follows:

The frame body consists of the MSDU or a fragment thereof, and a WEPIV-and1C&V-security header and
trailer (if and only if the WER-Protected Frame subfield in the Frame Control field is set to 1). The frame
body is null (0 octets in length) in data frames of subtypes Null Function (no data), CF-Ack (no data), CF-
Poll (no data), and CF-Ack+CF-Poll (no data).

7.2.3 Management frames

7.2.3.1 Beacon frame format

Insert the order 21 information field in Table 5:

Table 5—Beacon frame body

21 RSN The RSN information element is only present within
Beacon frames generated by STAs that have
dot11RSNAEnabled set to TRUE.

Copyright © 2004 IEEE. Al rights reserved. 23

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

7.2.3.4 Association Request frame format

Insert the order 8 information field in Table 7:

Table 7—Association Request frame body

8 RSN The RSN information element is only present within
Association Request frames generated by STAs that have
dot1l1RSNAEnabled set to TRUE.

7.2.3.6 Reassociation Request frame format

Insert the order 9 information field to Table 9:

Table 9—Reassociation Request frame body

9 RSN The RSN information element is only present within
Reassociation Request frames generated by STAs that
have dot 11RSNAEnabled set to TRUE.

7.2.3.9 Probe Response frame format

Insert the order 21 and 22—n information fields in Table 12:

Table 12—Probe Response frame body

21 RSN The RSN information element is only present within
Probe Response frames generated by STAs that have
dot1l1RSNAEnabled set to TRUE.

22-n Requested information elements Elements requested by the Request information element
of the Probe Request frame.

7.2.3.10 Authentication frame format
Insert the following text after the first sentence of 7.2.3.10:
Only Authentication frames with the authentication algorithm set to Open System authentication may be

used within an RSNA. RSNA STAs shall not associate if shared authentication was invoked prior to RSN
association.

24 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

7.3 Management frame body components

7.3.1 Fixed fields

7.3.1.4 Capability Information field

Change the sixth and seventh paragraphs in 7.3.1.4 as follows:

APs set the Privacy subfield to 1 within transmitted Beacon, Probe Response, Association Response, and
Reassociation Response management frames if WER-eneryptien-data confidentiality is required for all data
type frames exchanged within the BSS. If WEP-eneryption-data confidentiality is not required, APs-set-the

Privacy subfield is set to O-withinthese-management-frames.

In an RSNA, non-AP STAs in an ESS set the Privacy subfield to 0 within transmitted Association and Reas-
sociation Request management frames. APs ignore the Privacy subfield within received Association and
Reassociation Request management frames.

STAs within an IBSS set the Privacy subfield to 1 in transmitted Beacon or Probe Response management
frames if WEP-eneryption—data confidentiality is required for all data type frames exchanged within the
IBSS. If WEP-eneryption-data confidentiality is not required, STAs in an IBSS set the Privacy subfield is-set

to 0_within these management frames.

STAs that include the RSN information element in Beacon and Probe Response frames shall set the Privacy
subfield to 1 in any frame that includes the RSN information element.

7.3.1.7 Reason Code field

Insert reason codes 12 through 24 and change the final Reserved reason code row in Table 18 as follows:

Table 18—Reason codes

Reason code Meaning
12 Reserved
13 Invalid information element
14 MIC failure
15 4-Way Handshake timeout
16 Group Key Handshake timeout
17 Information element in 4-Way Handshake different from (Re)Association Request/Probe

Response/Beacon frame

18 Invalid group cipher

19 Invalid pairwise cipher

20 Invalid AKMP

21 Unsupported RSN information element version
22 Invalid RSN information element capabilities
23 IEEE 802.1X authentication failed

Copyright © 2004 IEEE. Al rights reserved. 25

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Table 18—Reason codes (continued)

Reason code Meaning
24 Cipher suite rejected per security policy
25-65 535 Reserved

7.3.1.9 Status Code field

Insert reason codes 27 through 46 and change the final Reserved reason code row in Table 19 as follows:

Table 19—Status codes

Status code Meaning
27-39 Reserved
40 Invalid information element
41 Invalid group cipher
42 Invalid pairwise cipher
43 Invalid AKMP
44 Unsupported RSN information element version
45 Invalid RSN information element capabilities
46 Cipher suite rejected per security policy
47-65 535 Reserved

7.3.2 Information elements

Replace element identifiers (IDs) 43 through 49 in Table 20 as follows:

Table 20—Element IDs

Information element Element ID
Reserved 43-47
RSN 48
Reserved 49

26 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

After 7.3.2.24, insert 7.3.2.25 through 7.3.2.25.5 and renumber tables and figures as necessary:

7.3.2.25 RSN information element

The RSN information element contains authentication and pairwise cipher suite selectors, a single group
cipher suite selector, an RSN Capabilities field, the PMK identifier (PMKID) count, and PMKID list. See
Figure 46ta. All STAs implementing RSNA shall support this element. The size of the RSN information ele-
ment is limited by the size of an information element, which is 255 octets. Therefore, the number of pairwise
cipher suites, AKM suites, and PMKIDs is limited.

Element Length Version Group Pairwise Pairwise AKM AKM RSN PMKID PMKID
ID 1 octet 2 octets Cipher Cipher Cipher Suite Suite List Capabilities Count List
1 octet Suite Suite Suite List Count 4-n 2 octets 2 octets 16-s
4 octets 2 octets 4-moctets | 2octets octets octets

Figure 46ta—RSN information element format

In Figure 46ta, m denotes the pairwise cipher suite count, n the AKM suite count, and s is the PMKID count.

All fields use the bit convention from 7.1.1. The RSN information element shall contain up to and including
the Version field. All fields after the Version field are optional. If any optional field is absent, then none of
the subsequent fields shall be included.

Element ID shall be 48 decimal (30 hex).

Length gives the number of octets in the information field (field(s) following the Element ID and Length
fields) of the information element.

The Version field indicates the version number of the RSNA protocol. The range of Version field values a
STA supports shall be contiguous. Values 0 and 2 or higher of the Version field are reserved. RSN Version
1 is defined in this amendment.

NOTE—The following represent sample information elements:

802.1X authentication, CCMP pairwise and group cipher suites (WEP-40, WEP-104, and TKIP not allowed).:
30, // information element id, 48 expressed as Hex value
14, // length in octets, 20 expressed as Hex value
01 00, // Version 1
00 OF AC 04, // CCMP as group cipher suite
01 00, // pairwise cipher suite count
00 OF AC 04, // CCMP as pairwise cipher suite
01 00, // authentication count
00 OF AC 01 // 802.1X authentication
00 00 // No capabilities

802.1X authentication, CCMP pairwise and group cipher suites (WEP-40, WEP-104 and TKIP not allowed),
preauthentication supported:

30, // information element id, 48 expressed as Hex value

14, // length in octets, 20 expressed as Hex value

01 00, / Version 1

00 OF AC 04, // CCMP as group cipher suite

01 00, // pairwise cipher suite count

00 OF AC 04, // CCMP as pairwise cipher suite

01 00, // authentication count

00 OF AC 01 // 802.1X authentication

01 00 // Preauthentication capabilities

Copyright © 2004 IEEE. Al rights reserved. 27

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

802.1X authentication, Use GTK for pairwise cipher suite, WEP-40 group cipher suites, optional RSN Capa-

bilities field omitted:
30, // information element id, 48 expressed as Hex value
12, // length in octets, 18 expressed as Hex value
01 00, // Version 1
00 OF AC 01, / WEP-40 as group cipher suite
01 00, // pairwise cipher suite count
00 OF AC 00, // Use group key as pairwise cipher suite
01 00, // authentication count
00 OF AC 01 // 802.1X authentication

802.1X authentication, Use CCMP for pairwise cipher suite, CCMP group cipher suites, preauthentication and

a PMKID.
30, // information element id, 48 expressed as Hex value
26 // length in octets, 38 expressed as Hex value
01 00, // Version 1
00 OF AC 04, // CCMP as group cipher suite
01 00, // pairwise cipher suite count
00 OF AC 04, // CCMP as pairwise cipher suite
01 00, // authentication count
00 OF AC 01 // 802.1X authentication
01 00 // Preauthentication capabilities
01 00 // PMKID Count
010203 04 0506 07 08 09 0A 0B 0C 0D OE OF 10 // PMKID

7.3.2.25.1 Cipher suites

The Group Cipher Suite field contains the cipher suite selector used by the BSS to protect broadcast/multi-

cast traffic.

The Pairwise Cipher Suite Count field indicates the number of pairwise cipher suite selectors that are con-

tained in the Pairwise Cipher Suite List field.

The Pairwise Cipher Suite List field contains a series of cipher suite selectors that indicate the pairwise

cipher suites contained in the RSN information element.

A suite selector has the format shown in Figure 46tb.

Ooul Suite Type
3 octets 1 octet

Figure 46tb—Suite selector format

The order of the organizationally unique indentifier (OUI) field shall follow the ordering convention for

MAUC addresses from 7.1.1.

Table 20da provides the cipher suite selectors defined by this amendment.

Table 20da—Cipher suite selectors

(010) 1 Suite type Meaning
00-0F-AC 0 Use group cipher suite
00-0F-AC 1 WEP-40

28 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Table 20da—Cipher suite selectors (continued)

oul Suite type Meaning
00-0F-AC 2 TKIP
00-0F-AC 3 Reserved
00-0F-AC 4 CCMP — default in an RSNA
00-0F-AC 5 WEP-104
00-0F-AC 6-255 Reserved
Vendor OUI Other Vendor specific
Other Any Reserved

The cipher suite selector 00-0F-AC:4 (CCMP) shall be the default cipher suite value.

The cipher suite selectors 00-0F-AC:1 (WEP-40) and 00-0F-AC:5 (WEP-104) are only valid as a group
cipher suite in a transition security network (TSN) to allow pre-RSNA devices to join the BSS.

Use of CCMP as the group cipher suite with TKIP as the pairwise cipher suite shall not be supported.

NOTE—If the STAs can support CCMP, then there is no need for a weaker data confidentiality protocol.

The cipher suite selector 00-0F-AC:0 (Use group cipher suite) is only valid as the pairwise cipher suite. An
AP may specify the selector 00-0F-AC:0 (Use group cipher suite) for a pairwise cipher suite if it does not
support any pairwise cipher suites. If an AP specifies 00-0F-AC:0 (Use group cipher suite) as the pairwise

cipher selection, this shall be the only pairwise cipher selection the AP advertises.

If CCMP is enabled, then the AP supports pairwise keys, and thus the suite selector 00-0F-AC:0 (Use group
cipher suite) shall not be a valid option.

Table 20db indicates the circumstances under which each cipher suite shall be used.

Table 20db—Cipher suite usage

Cipher suite selector GTK PTK
Use group key No Yes
WEP-40 Yes No
WEP-104 Yes No
TKIP Yes Yes
CCMP Yes Yes

7.3.2.25.2 AKM suites

The AKM Suite Count field indicates the number of AKM suite selectors that are contained in the AKM
Suite List field.

Copyright © 2004 IEEE. Al rights reserved. 29

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

The AKM Suite List field contains a series of AKM suite selectors contained in the RSN information ele-
ment. In an IBSS, only a single AKM suite selector may be specified because STAs in an IBSS must use the
same AKM suite and because there is no mechanism to negotiate the AKMP in an IBSS (see 8.4.4).

Each AKM suite selector specifies an AKMP. Table 20dc gives the AKM suite selectors defined by this
amendment.

Table 20dc—AKM suite selectors

Meaning
(010) 1 Suite type
Authentication type Key management type
00-0F-AC Reserved Reserved
00-0F-AC Authentication negotiated over [IEEE | RSNA key management as defined
802.1X or using PMKSA caching as | in 8.5 or using PMKSA caching as
defined in 8.4.6.2 — RSNA default defined in 8.4.6.2 — RSNA default
00-0F-AC PSK RSNA key management as defined
in 8.5, using PSK
00-0F-AC 3-255 Reserved Reserved
Vendor OUI Any Vendor specific Vendor specific
Other Any Reserved Reserved

The AKM suite selector value 00-OF-AC:1 (Authentication negotiated over IEEE 802.1X) with (RSNA key
management as defined in 8.5 or using PMKSA caching as defined in 8.4.6.2) shall be the assumed default
when the AKM suite selector field is not supplied.

NOTE—The selector value 00-OF-AC:1 specifies only that IEEE 802.1X is used as the authentication transport. [IEEE
802.1X selects the authentication mechanism.

The AKM suite selector value 00-OF-AC:2 (PSK) is used when a PSK is used with RSNA key management.

NOTE—Selector values 00-0F-AC:1 and 00-0F-AC:2 can simultaneously be enabled by an Authenticator.

7.3.2.25.3 RSN capabilities

The RSN Capabilities field indicates requested or advertised capabilities. The value of each of the RSN
Capabilities fields shall be taken to be 0 if the RSN Capabilities field is not available in the RSN information
element.

The length of the RSN Capabilities field is 2 octets. The format of the RSN Capabilities field is as illustrated
in Figure 46tc and described after the figure.

BO B1 B2 B3 B4 Ba B5

Mo PTKSA Replay GTKSAReplay
Pairwize Counter Counter

B15

Reserved

Pre-Auth

Figure 46tc—RSN Capabilities field format

30 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

— Bit 0: Pre-Authentication. An AP sets the Pre-Authentication subfield of the RSN Capabilities field
to 1 to signal it supports preauthentication (see 8.4.6.1) and sets the subfield to 0 when it does not
support preauthentication. A non-AP STA sets the Pre-Authentication subfield to 0.

— Bit 1: No Pairwise. If a STA can support WEP default key 0 simultaneously with a pairwise key (see
8.5.1), then the STA sets the No Pairwise subfield of the RSN Capabilities field to 0.

If a STA cannot support WEP default key 0 simultaneously with a pairwise key (see 8.5.1), then the
STA sets the No Pairwise subfield of the RSN Capabilities field to 1.

The No Pairwise subfield describes a capability of a non-AP STA. STAs in an IBSS and APs set the
No Pairwise subfield to 0.

The No Pairwise subfield shall be set only in a TSN and when the pairwise cipher suite selected by
the STA is TKIP.

— Bits 2-3: PTKSA Replay Counter. A STA sets the PTKSA Replay Counter subfield of the RSN
Capabilities field to the value contained in dot11RSNAConfigNumberofPTKSAReplay-
Counters. The least significant bit (LSB) of dotl11RSNAConfigNumberofPTKSA-
ReplayCounters is put in bit 2. See 8.3.2.6 and 8.3.3.4.3. The meaning of the value in the
PTKSA/GTKSA/STAKeySA Replay Counter subfield is defined in Table 20dd. The number of
replay counters per STAKeySA is the same as the number of replay counters per PTKSA or
GTKSA.

Table 20dd—PTKSA/GTKSA/STAKeySA replay counters usage

Replay counter Meaning
value
0 1 replay counter per PTKSA/GTKSA/STAKeySA
1 2 replay counters per PTKSA/GTKSA/STAKeySA
2 4 replay counters per PTKSA/GTKSA/STAKeySA
3 16 replay counters per PTKSA/GTKSA/STAKeySA

— Bits 4-5: GTKSA Replay Counter. A STA sets the GTKSA Replay Counter subfield of the RSN
Capabilities field to the value contained in dot11RSNAConfigNumberofGTKSAReplay-
Counters. The LSB of dot11RSNAConfigNumberofGTKSAReplayCounters is put in
bit 4. See 8.3.2.6 and 8.3.3.4.3. The meaning of the value in the GTKSA Replay Counter subfield is
defined in Table 20dd.

— Bits 6-15: Reserved. The remaining subfields of the RSN Capabilities field are reserved and shall be
set to 0 on transmission and ignored on reception.

7.3.2.25.4 PMKID

The PMKID Count and List fields shall be used only in the RSN information element in the (Re)Association
Request frame to an AP. The PMKID Count specifies the number of PMKIDs in the PMKID List field. The
PMKID list contains 0 or more PMKIDs that the STA believes to be valid for the destination AP. The
PMKID can refer to

a) A cached PMKSA that has been obtained through preauthentication with the target AP
b) A cached PMKSA from an EAP authentication
¢) A PMKSA derived from a PSK for the target AP

Copyright © 2004 IEEE. Al rights reserved. 31

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

See 8.5.1.2 for the construction of the PMKID.

NOTE—A STA can choose not to insert a PMKID in the PMKID List field if the STA does not want to use that
PMKSA.

End of changes to Clause 7.

Replace Clause 8 in its entirety with the following text:

8. Security

8.1 Framework

This amendment defines two classes of security algorithms for IEEE 802.11 networks:

Algorithms for creating and using a RSNA, called RSNA algorithms
Pre-RSNA algorithms

NOTE—This amendment does not prohibit STAs from simultaneously operating pre-RSNA and RSNA algorithms.

8.1.1 Security methods

Pre-RSNA security comprises the following algorithms:
— WEP, described in 8.2.1
— IEEE 802.11 entity authentication, described in 8.2.2

RSNA security comprises the following algorithms:
TKIP, described in 8.3.2
— CCMP, described in 8.3.3

— RSNA establishment and termination procedures, including use of IEEE 802.1X authentication,
described in 8.4

— Key management procedures, described in 8.5

8.1.2 RSNA equipment and RSNA capabilities

RSNA-capable equipment can create RSNAs. When dot11RSNAEnabled is true, RSNA-capable equip-
ment shall include the RSN information element in Beacon, Probe Response, and (Re)Association Request
frames and in Message 2 and Message 3 of the 4-Way Handshake. Pre-RSNA equipment is not capable of
creating RSNAs.

8.1.3 RSNA establishment

A STA’s SME establishes an RSNA in one of four ways:

a) When using [EEE 802.1X AKM in an ESS, an RSNA-capable STA’s SME establishes an RSNA as
follows:

1) It identifies the AP as RSNA-capable from the AP’s Beacon or Probe Response frames.
2) It shall invoke Open System authentication.

3) It negotiates cipher suites during the association process, as described in 8.4.2 and 8.4.3.
4) Ttuses IEEE 802.1X to authenticate, as described in 8.4.6 and 8.4.7.

5) It establishes temporal keys by executing a key management algorithm, using the protocol
defined by 8.5.

32 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

6)

It programs the agreed-upon temporal keys and cipher suites to protect into the MAC and
invokes protection. See 8.3.2 and 8.3.3 for a description of the RSNA data protection
mechanisms.

b) Ifan RSNA is based on a PSK in an ESS, the STA’s SME establishes an RSNA as follows:

)
2)
3)
4)

5)

It identifies the AP as RSNA-capable from the AP’s Beacon or Probe Response frames.
It shall invoke Open System authentication.
It negotiates cipher suites during the association process, as described in 8.4.2 and 8.4.3.

It establishes temporal keys by executing a key management algorithm, using the protocol
defined by 8.5. It uses the PSK as the PMK.

It protects the data link by programming the negotiated cipher suites and the established tempo-
ral key into the MAC and then invoking protection.

c¢) If an RSNA is based on a PSK in an IBSS, the STA’s SME executes the following sequence of
procedures:

)

2)
3)

4)

It identifies the peer as RSNA-capable from the peer’s Beacon or Probe Response frames.

NOTE—STAs may respond to a data MPDU from an unrecognized STA by sending a Probe Request
frame to find out whether the unrecognized STA is RSNA-capable.

It may optionally invoke Open System authentication.

Each STA uses the procedures in 8.5, to establish temporal keys and to negotiate cipher suites.
It uses a PSK as the PMK. Note that two peer STAs may follow this procedure simultaneously.
See 8.4.9.

It protects the data link by programming the negotiated cipher suites and the established tempo-
ral key and then invoking protection.

d) An RSNA-capable STA’s SME using IEEE 802.1X AKM in an IBSS establishes an RSNA as
follows:

1)

2)
3)

4)

5)

It identifies the peer as RSNA-capable from the peer’s Beacon or Probe Response frames.

NOTE—STAs may respond to a data MPDU from an unrecognized STA by sending a Probe Request
frame to find out whether the unrecognized STA is RSNA-capable.

It may optionally invoke Open System authentication.

Each station uses IEEE 802.1X to authenticate with the AS associated with the other STA’s
Authenticator, as described in 8.4.6 and 8.4.7. Hence two authentications are happening at the
same time.

Each STA’s SME establishes temporal keys by executing a key management algorithm, using
the protocol defined in 8.5. Hence two such key management algorithms are happening in par-
allel between any two STA’s Supplicants and Authenticators.

Both STAs use the agreed-upon temporal key portion of the PTK and pairwise cipher suite
from one of the exchanges to protect the link. Each STA uses the GTK established by the
exchange it initiated to protect the multicast and broadcast frames it transmits.

The time a security association takes to set up shall be less than the MIB variable dot 1 1RSNAConfigSA-
Timeout. The security association setup starts when initiated by the SME and completes when the
MLME-SETPROTECTION.request primitive is invoked. The action the STA takes on the timeout is a pol-
icy decision. Some options include retrying the security association setup or trying another STA. This time-
out allows recovery when one of the STAs setting up a security association fails to respond correctly to
setting up the security association. It also allows recovery in IBSS when one of the two security associations
fails because of a security association timeout.

Copyright © 2004 IEEE. Al rights reserved. 33

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

8.1.4 RSNA assumptions and constraints (informative)

An RSNA assumes the following:

a)

b)

g

h)

Each STA can generate cryptographic-quality random numbers. This assumption is fundamental, as
cryptographic methods require a source of randomness. See H.6 for suggested hardware and soft-
ware methods to achieve randomness suitable for this purpose.

When IEEE 802.1X authentication is used, the specific EAP method used performs mutual authenti-
cation. This assumption is intrinsic to the design of RSN in IEEE 802.11 LANs and cannot be
removed without exposing both the STAs to man-in-the-middle attacks. EAP-MD)5 is an example of
an EAP method that does not meet this constraint (see IETF RFC 3748). Furthermore, the use of
EAP authentication methods where server and client credentials cannot be differentiated reduces the
security of the method to that of a PSK due to the fact that malicious insiders can masquerade as
servers and establish a man-in-the-middle attack.

In particular, the mutual authentication requirement implies an unspecified prior enrollment process
(e.g., a long-lived authentication key or establishment of trust through a third party such as a certifi-
cation authority), as the STA must be able to identify the ESS or IBSS as a trustworthy entity and
vice versa. The STA shares authentication credentials with the AS utilized by the selected AP or, in
the case of PSK, the selected AP. The service set identifier (SSID) provides an unprotected indica-
tion that the selected AP’s authentication entity shares credentials with the STA. Only the successful
completion of the IEEE 802.1X EAP or PSK authentication, after association, can validate any such
indication that the AP is connected to an authorized network or service provider.

The mutual authentication method must be strong, meaning impersonation attacks are computation-
ally infeasible when based on the information exposed by the authentication. This assumption is
intrinsic to the design of RSN.

The AP and AS have a trustworthy channel between them that can be used to exchange crypto-
graphic keys without exposure to any intermediate parties.

An IEEE 802.1X AS never exposes the common symmetric key to any party except the AP with
which the STA is currently communicating. This is a very strong constraint. It implies that the AS
itself is never compromised. It also implies that the IEEE 802.1X AS is embedded in the AP or that
the AP is physically secure and the AS and the AP lie entirely within the same administrative
domain. This assumption follows from the fact that if the AP and the AS are not co-located or do not
share pairwise key encryption keys directly, then it is impossible to assure the mobile STA that its
key, which is distributed by the AS to the AP, has not been compromised prior to use.

Similarly, a STA never shares with a third party a common symmetric key that it shares with a peer.
Doing so destroys the utility of the key for detecting MPDU replay and forgery.

The STA’s Supplicant and the Authenticator generate a different, fresh PTK for each session
between the pair. This assumption is fundamental, as reuse of any PTK would enable compromise of
all the data protected by that key.

The destination STA chosen by the transmitter is the correct destination. For example, Address Res-
olution Protocol (ARP) and Internet Control Message Protocol (ICMP) are methods of determining
the destination STA MAC address that are not secure from attacks by other members of the ESS.
One of the possible solutions to this problem might be for the STA to send or receive only frames
whose final destination address (DA) or source address (SA) are the AP and for the AP to provide a
network layer routing function. However, such solutions are outside the scope of this amendment.

8.2 Pre-RSNA security methods

Except for Open System authentication, all pre-RSNA security mechanisms have been deprecated, as they
fail to meet their security goals. New implementations should support pre-RSNA methods only to aid migra-
tion to RSNA methods.

34

Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

8.2.1 Wired equivalent privacy (WEP)
8.2.1.1 WEP overview

WEP-40 was defined as a means of protecting (using a 40-bit key) the confidentiality of data exchanged
among authorized users of a wireless LAN from casual eavesdropping. Implementation of WEP is optional.
The same algorithms have been widely used with a 104-bit key instead of a 40-bit key in fielded implemen-
tations; this is called WEP-104. The WEP encapsulation and decapsulation mechanics are the same whether
a 40-bit or a 104-bit key is used. Therefore, subsequently, WEP can refer to either WEP-40 or WEP-104.

8.2.1.2 WEP MPDU format

Figure 43 10 depicts the encrypted frame body as constructed by the WEP algorithm.

,‘7 Encrypted (Note) ——

v Data ICV
4 >=1 4
\\ \\\\ Sizes in Octets
\\\ ~o < R
| \\\\\
Init. Vector 1 octet
3 Pad |KeyID
6 bits | 2 bits

NOTE—The encipherment process has expanded the original MSDU by 8 octets, 4 for the
IV field and 4 for the ICV field. The ICV is calculated on the Data field only.

Figure 43—Construction of expanded WEP MPDU

The WEP ICV field shall be 32 bits in length. The expanded frame body shall start with a 32-bit IV field.
This field shall contain three subfields: a 3-octet subfield that contains the initialization vector (IV), a 2-bit
Key ID subfield, and a 6-bit Pad subfield. The ordering conventions defined in 7.1.1 apply to the IV field
and its subfields and to the ICV field. The Key ID subfield contents select one of four possible secret key
values for use in decrypting this frame body. When key-mapping keys are used, the Key ID field value is
ignored.

Interpretation of these bits is discussed further in 8.2.1.3. The contents of the Pad subfield shall be 0. The
Key ID subfield occupies the 2 most significant bits (MSBs) of the last octet of the IV field, while the Pad
subfield occupies the 6 LSBs of this octet.

"Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement this
amendment.

Copyright © 2004 IEEE. Al rights reserved. 35

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

8.2.1.3 WEP state

WEP uses encryption keys only; it performs no data authentication. Therefore, it does not have data integrity
keys. WEP uses two types of encryption keys: key-mapping keys and default keys.

A key-mapping key is an unnamed key corresponding to a distinct transmitter address-receiver address
<TA,RA> pair. Implementations shall use the key-mapping key if it is configured for a <TA,RA> pair. In
other words, the key-mapping key shall be used to WEP-encapsulate or -decapsulate MPDUs transmitted by
TA to RA, regardless of the presence of other key types. When a key-mapping key for an address pair is
present, the WEP Key ID subfield in the MPDU shall be set to 0 on transmit and ignored on receive.

A default key is an item in a four-element MIB array called dot11WEPDefaultKeys, named by the
value of a related array index called dot11WEPDefaultKeyID. If a key-mapping key is not configured
for a WEP MPDU’s <TA,RA> pair, WEP shall use a default key to encapsulate or decapsulate the MPDU.
On transmit, the key selected is the element of the dotl1DefaultKeys array given by the index
dot11WEPDefaultKeyID—a value of 0, 1, 2, or 3—corresponding to the first, second, third, or fourth
element, respectively, of dot11WEPDefaultKeys. The value the transmitter encodes in the WEP Key
ID subfield of the transmitted MPDU shall be the dot11WEPDefaultKeyID value. The receiver shall
use the Key ID subfield of the MPDU to index into dot11WEPDefaultKeys to obtain the correct default
key. All WEP implementations shall support default keys.

NOTE—Many implementations also support 104-bit WEP keys. These are used exactly like 40-bit WEP keys: a 24-bit
WEP 1V is prepended to the 104-bit key to construct a 128-bit WEP seed, as explained in 8.2.1.4.3. The resulting 128-bit
WEP seed is then consumed by the RC4 stream cipher.

This construction based on 104-bit keys affords no more assurance than the 40-bit construction, and its implementation
and use are in no way condoned by this amendment. Rather, the 104-bit construction is noted only to document de facto
practice.

The default value for all WEP keys shall be null. WEP implementations shall discard the MSDU and gener-
ate an MA-UNITDATA-STATUS.indication with transmission status indicating that a frame may not be
encapsulated with a null key in response to any request to encapsulate an MPDU with a null key.

8.2.1.4 WEP procedures
8.2.1.4.1 WEP ICV algorithm

The WEP ICV shall be computed using the CRC-32, as defined in 7.1.3.6, calculated over the plaintext
MPDU Data (PDU) field.

8.2.1.4.2 WEP encryption algorithm

A WEP implementation shall use the RC4 stream cipher from RSA Security, Inc., as its encryption and
decryption algorithm. RC4 uses a pseudo-random number generator (PRNG) to generate a key stream that it
exclusive-ORs (XORs) with a plaintext data stream to produce cipher text or to recover plaintext from a
cipher text.

8.2.1.4.3 WEP seed construction

A WEP implementation shall construct a per-MPDU key, called a seed, by concatenating an encryption key
to an IV.

For WEP-40, bits 0-39 of the WEP key correspond to bits 24—63 of the seed, and bits 0-23 of the IV corre-

spond to bits 0-23 of the seed, respectively. The bit numbering conventions in 7.1.1 apply to the seed. The
seed shall be the input to RC4, in order to encrypt or decrypt the WEP Data and ICV fields.

36 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

NOTE—For WEP-104, bits 0-103 of the WEP key correspond to bits 24—127 of the seed, and bit 0-23 of the IV corre-
spond to bits 0-23 of the seed, respectively.

The WEP implementation encapsulating an MPDU’s plaintext data should select a new IV for every MPDU
it WEP-protects. The IV selection algorithm is unspecified. The algorithm used to select the encryption key
used to construct the seed is also unspecified.

The WEP implementation decapsulating an MPDU shall use the IV from the received MPDU’s Init Vector
subfield. See 8.2.1.4.5 for the specification of how the decapsulator selects the key to use to construct the
per-MPDU key.

8.2.1.4.4 WEP MPDU encapsulation

WEP shall apply three transformations to the plaintext MPDU to effect the WEP encapsulation. WEP com-
putes the ICV over the plaintext data and appends this after the MPDU data. WEP encrypts the MPDU
plaintext data and ICV using RC4 with a seed constructed as specified in 8.2.1.4.3. WEP encodes the IV and
key identifier into the IV field, prepended to the encrypted Data field.

Figure 43a depicts the WEP encapsulation process. The ICV shall be computed and appended to the plain-
text data prior to encryption, but the IV encoding step may occur in any order convenient for the
implementation.

»> Y
[nitialization o
Vector (IV) T Seed | Roa | KeySweam
I PRING ot
WEP Ke'y’ —e] @ 1oh
Flaintext —» >
I
L»{ CRC32 |—>
Integrity Check Value {ICV)
Massage

Figure 43a—WEP encapsulation block diagram

8.2.1.4.5 WEP MPDU decapsulation

WEP shall apply three transformations to the WEP MPDU to decapsulate its payload. WEP extracts the [V
and key identifier from the received MPDU. If a key-mapping key is present for the <TA,RA> pair, then this
shall be used as the WEP key. Otherwise, the key identifier is extracted from the Key ID subfield of the
WEP 1V field in the received MPDU, identifying the default key to use.

WEP uses the constructed seed to decrypt the Data field of the WEP MPDU; this produces plaintext data and
an ICV. Finally WEP recomputes the ICV and bit-wise compares it with the decrypted ICV from the
MPDU. If the two are bit-wise identical, then WEP removes the IV and ICV from the MPDU, which is
accepted as valid. If they differ in any bit position, WEP generates an error indication to MAC management.
MSDUs with erroneous MPDUs (due to inability to decrypt) shall not be passed to LLC.

Figure 43b depicts a block diagram for WEP decapsulation. Unlike encapsulation, the decapsulation steps
shall be in the indicated order.

Copyright © 2004 IEEE. Al rights reserved. 37

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS
WEF Key
Ky
W | seed | rea | sream . Flaintex .
PRMG o -
I »
2 o
T —
Cipher n S
et " *
Meszace

Figure 43b—WEP decapsulation block diagram

8.2.2 Pre-RSNA authentication
8.2.2.1 Overview

In an ESS, a non-AP STA and an AP must both complete an IEEE 802.11 authentication exchange prior to
association. Such an exchange is optional in an independent BSS network.

All management frames of subtype Authentication shall be unicast, as [EEE 802.11 authentication is per-
formed between pairs of STAs, i.e., broadcast/multicast authentication is not allowed. Management frames
of subtype Deauthentication are advisory and may be sent as group addressed frames.

Shared Key authentication is deprecated and should not be implemented except for backward compatibility
with pre-RSNA devices.

8.2.2.2 Open System authentication

Open System authentication is a null authentication algorithm. Any STA requesting Open System authenti-
cation may be authenticated if dot11AuthenticationType at the recipient STA is set to Open System
authentication. A STA may decline to authenticate with another requesting STA. Open System authentica-
tion is the default authentication algorithm for pre-RSNA equipment.

Open System authentication utilizes a two-message authentication transaction sequence. The first message
asserts identity and requests authentication. The second message returns the authentication result. If the
result is “successful,” the STAs shall be declared mutually authenticated.

In the description in 8.2.2.2.1 and 8.2.2.2.2, the STA initiating the authentication exchange is referred to as
the requester, and the STA to which the initial frame in the exchange is addressed is referred to as the
responder.

8.2.2.2.1 Open System authentication (first frame)

— Message type: Management

— Message subtype: Authentication

— Information items:
* Authentication Algorithm Identification = “Open System”
» STA Identity Assertion (in SA field of header)

38 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

* Authentication transaction sequence number = 1
* Authentication algorithm dependent information (none)

— Direction of message: From requester to responder
8.2.2.2.2 Open System authentication (final frame)

— Message type: Management
— Message subtype: Authentication
— Information items:
* Authentication Algorithm Identification = “Open System”
* Authentication transaction sequence number = 2
* Authentication algorithm dependent information (none)
¢ The result of the requested authentication as defined in 7.3.1.9

— Direction of message: From responder to requester

If dotllAuthenticationType does not include the value “Open System,” the result code shall not
take the value “successful.”

8.2.2.3 Shared Key authentication

Shared Key authentication seeks to authenticate STAs as either a member of those who know a shared secret
key or a member of those who do not.

Shared Key authentication can be used if and only if WEP has been selected.

This mechanism uses a shared key delivered to participating STAs via a secure channel that is independent
of IEEE 802.11. This shared key is set in a write-only MIB attribute with the intent to keep the key value
internal to the STA.

A STA shall not initiate a Shared Key authentication exchange unless its dot11PrivacyOption-
Implemented attribute is true.

In the description in 8.2.2.3.1 through 8.2.2.3.5, the STA initiating the authentication exchange is referred to
as the requester, and the STA to which the initial frame in the exchange is addressed is referred to as the
responder.

8.2.2.3.1 Shared Key authentication (first frame)

— Message type: Management
— Message subtype: Authentication
— Information items:
» STA Identity Assertion (in SA field of header)
* Authentication Algorithm Identification = “Shared Key”
 Authentication transaction sequence number = 1
* Authentication algorithm dependent information (none)

— Direction of message: From requester to responder

Copyright © 2004 IEEE. Al rights reserved. 39

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

8.2.2.3.2 Shared Key authentication (second frame)

Before sending the second frame in the Shared Key authentication sequence, the responder shall use WEP to
generate a string of octets to be used as the authentication challenge text.

— Message type: Management
— Message subtype: Authentication
— Information items:
* Authentication Algorithm Identification = “Shared Key”
* Authentication transaction sequence number = 2
 Authentication algorithm dependent information = The authentication result
* The result code of the requested authentication as defined in 7.3.1.9.

If the status code is not “successful,” this shall be the last frame of the transaction sequence;
and the content of the challenge text field is unspecified.

If the status code is “successful,” the following additional information items shall have valid
contents:

Authentication algorithm dependent information = The challenge text

This authentication result shall be of fixed length of 128 octets. The field shall be filled with
octets generated by the WEP PRNG. The actual value of the challenge field is unimportant, but
the value shall not be a static value.

— Direction of message: From responder to requester
8.2.2.3.3 Shared Key authentication (third frame)

The requester shall copy the challenge text from the second frame into the third frame. The third frame shall
be transmitted after encapsulation by WEP, as defined in 8.2.1, using the shared key.

— Message type: Management
— Message subtype: Authentication
— Information items:
* Authentication Algorithm Identification = “Shared Key”
* Authentication transaction sequence number = 3
* Authentication algorithm dependent information = The challenge text from the second frame

— Direction of message: From requester to responder
8.2.2.3.4 Shared Key authentication (final frame)

The responder shall WEP-decapsulate the third frame as described in 8.2.1. If the WEP ICV check is suc-
cessful, the responder shall compare the decrypted contents of the Challenge Text field with the challenge
text sent in second frame. If they are the same, then the responder shall respond with a successful status code
in the final frame of the sequence. If the WEP ICV check fails or challenge text comparison fails, the
responder shall respond with an unsuccessful status code in final frame.

— Message type: Management

— Message subtype: Authentication

— Information items:
* Authentication Algorithm Identification = “Shared Key”
* Authentication transaction sequence number = 4

* Authentication algorithm dependent information = The authentication result

40 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

* The result code of the requested authentication as defined in 7.3.1.9.

This is a fixed length item with values “successful” and “unsuccessful.”

— Direction of message: From responder to requester

8.2.2.3.5 Shared key MIB attributes

To transmit a management frame of subtype Authentication, with an Authentication Transaction Sequence
Number field value of 2, the MAC shall operate according to the following decision tree:

if dot11PrivacyOptionImplemented is “false” then
the MMPDU is transmitted with a sequence of 0 octets in the Challenge Text field and a status
code value of 13

else

the MMPDU is transmitted with a sequence of 128 octets generated using the WEP PRNG and
a key whose value is unspecified and beyond the scope of this amendment and a randomly cho-
sen IV value (note that this will typically be selected by the same mechanism for choosing IV
values for transmitted data MPDUs) in the Challenge Text field and a status code value of 0
(the TV used is immaterial and is not transmitted). Note that there are cryptographic issues
involved in the choice of key/I'V for this process as the challenge text is sent unencrypted and,
therefore, provides a known output sequence from the PRNG.

endif

To receive a management frame of subtype Authentication, with an Authentication Transaction Sequence
Number field value of 2, the MAC shall operate according to the following decision tree:

if the Protected Frame subfield of the Frame Control field is 1 then
respond with a status code value of 15

else

ifdotl1PrivacyOptionImplemented is “true” then
if there is a mapping in dot 1 1WEPKeyMappings matching the MSDU’s TA then
if that key is null then

else

respond with a frame whose Authentication Transaction Sequence Number field
is 3 that contains the appropriate authentication algorithm number, a status code
value of 15, and no Challenge Text field, without encrypting the contents of the
frame

respond with a frame whose Authentication Transaction Sequence Number field
is 3 that contains the appropriate authentication algorithm number, a status code
value of 0, and the identical Challenge Text field, encrypted using that key, and
setting the Key ID subfield in the IV field to 0

endif

else

if dot11WEPDefaultKeys[dotl1WEPDefaultKeyID]is null then

else

respond with a frame whose Authentication Transaction Sequence Number field
is 3 that contains the appropriate authentication algorithm number, a status code
value of 15, and no Challenge Text field, without encrypting the contents of the
frame

respond with a frame whose Authentication Transaction Sequence Number field
is 3 that contains the appropriate authentication algorithm number, a status code
value of 0, and the identical Challenge Text field, WEP-encapsulating the frame
under the key dot11WEPDefaultKeys[dotl1WEPDefaultKeyID], and
setting the Key ID subfield in the IV field to dot 1 1WEPDefaultKeyID

endif

Copyright © 2004 IEEE. Al rights reserved. 41

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

endif
else

respond with a frame whose Authentication Transaction Sequence Number field is 3 that
contains the appropriate authentication algorithm number, a status code value of 13, and
no Challenge Text field, without encrypting the contents of the frame

endif
endif

When receiving a management frame of subtype Authentication, with an Authentication Transaction
Sequence Number field value of 3, the MAC shall operate according to the following decision tree:
if the Protected Frame subfield of the Frame Control field is O then
respond with a status code value of 15
else
ifdot11PrivacyOptionImplemented is “true” then
if there is a mapping in dot 1 1WEPKeyMappings matching the MSDU’s TA then
if that key is null then

respond with a frame whose Authentication Transaction Sequence Number field
is 4 that contains the appropriate authentication algorithm number and a status
code value of 15 without encrypting the contents of the frame

else

WEP-decapsulate with that key, incrementing dot11WEPICVErrorCount
and responding with a status code value of 15 if the ICV check fails

endif
else
if dot11WEPDefaultKeys[dotl11WEPDefaultKeyID]is null then

respond with a frame whose Authentication Transaction Sequence Number field
is 4 that contains the appropriate authentication algorithm number and a status
code value of 15 without encrypting the contents of the frame

else

WEP-decapsulate with dotl1WEPDefaultKeys[dotl1lWEPDefault-
KeyID], incrementing dot11WEPICVErrorCount and responding with a
status code value of 15 if the ICV check fails

endif
endif
else

respond with a frame whose Authentication Transaction Sequence Number field is 4 that
contains the appropriate authentication algorithm number and a status code value of 15

endif
endif

The attribute dot11PrivacyInvoked shall not take the value of true if the attribute dot11Privacy-
OptionImplemented is false. Setting dot11WEPKeyMappings to a value that includes more than
dotl1lWEPKeyMappingLength entries is illegal and shall have an implementation-specific effect on the
operation of the confidentiality service. Note that dot11WEPKeyMappings may contain from zero to
dot1l1WEPKeyMappingLength entries, inclusive.

The values of the attributes in the aPrivacygrp should not be changed during the authentication sequence, as
unintended operation may result.

42 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

8.3 RSNA data confidentiality protocols
8.3.1 Overview

This amendment defines two RSNA data confidentiality and integrity protocols: TKIP and CCMP. Imple-
mentation of CCMP shall be mandatory in all IEEE 802.11 devices claiming RSNA compliance. Implemen-
tation of TKIP is optional for an RSNA. A design aim for TKIP was that the algorithm should be
implementable within the capabilities of most devices supporting only WEP, so that many such devices
would be field-upgradeable by the supplier to support TKIP.

NOTE—Use of any of the confidentiality algorithms depends on local policies. The confidentiality and integrity mecha-
nisms of TKIP are not as robust as those of CCMP. TKIP is designed to operate within the hardware limitations of a
broad class of pre-RSNA devices. TKIP is suitable for firmware-only, hardware-compatible upgrade of fielded equip-
ment. RSNA devices should only use TKIP when communicating with devices that are unable or not configured to com-
municate using CCMP.

8.3.2 Temporal Key Integrity Protocol (TKIP)
8.3.2.1 TKIP overview

The TKIP is a cipher suite enhancing the WEP protocol on pre-RSNA hardware. TKIP modifies WEP as
follows:

a) A transmitter calculates a keyed cryptographic message integrity code (MIC) over the MSDU SA
and DA, the MSDU priority (see 8.3.2.3), and the MSDU plaintext data. TKIP appends the com-
puted MIC to the MSDU data prior to fragmentation into MPDUs. The receiver verifies the MIC
after decryption, ICV checking, and defragmentation of the MPDUs into an MSDU and discards any
received MSDUs with invalid MICs. TKIP’s MIC provides a defense against forgery attacks.

b) Because of the design constraints of the TKIP MIC, it is still possible for an adversary to compro-
mise message integrity; therefore, TKIP also implements countermeasures. The countermeasures
bound the probability of a successful forgery and the amount of information an attacker can learn
about a key.

¢) TKIP uses a per-MPDU TKIP sequence counter (TSC) to sequence the MPDUs it sends. The
receiver drops MPDUs received out of order, i.e., not received with increasing sequence numbers.
This provides replay protection. TKIP encodes the TSC value from the sender to the receiver as a
WEP IV and extended IV.

d) TKIP uses a cryptographic mixing function to combine a temporal key, the TA, and the TSC into the
WEDP seed. The receiver recovers the TSC from a received MPDU and utilizes the mixing function
to compute the same WEP seed needed to correctly decrypt the MPDU. The key mixing function is
designed to defeat weak-key attacks against the WEP key.

TKIP defines additional MIB variables; see Annex D.
8.3.2.1.1 TKIP encapsulation

TKIP enhances the WEP encapsulation with several additional functions, as depicted in Figure 43c.

a) TKIP MIC computation protects the MSDU Data field and corresponding SA, DA, and Priority
fields. The computation of the MIC is performed on the ordered concatenation of the SA, DA, Prior-
ity, and MSDU Data fields. The MIC is appended to the MSDU Data field. TKIP discards any MIC
padding prior to appending the MIC.

b) If needed, IEEE 802.11 fragments the MSDU with MIC into one or more MPDUs. TKIP assigns a
monotonically increasing TSC value to each MPDU, taking care that all the MPDUs generated from
the same MSDU have the same value of extended IV (see 8.3.2.2).

¢) For each MPDU, TKIP uses the key mixing function to compute the WEP seed.

Copyright © 2004 IEEE. Al rights reserved. 43

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS
WEP zeed(g]
TA [reprezented az WEF
TK F'hkaxe 1 TTAK Fll:lg ceu]
> ey + 2y
w mixing |_p B 2 I
ase
2 L RC4 key—m
st - key mixing Ciphertext
* MPDU (=)
WEP
Bﬁu:itglﬁ; : E ncapsulation ’
Flaintext MSDL >
EE - Fragment(s) »
b ichael - »
- Flaintext
b 1 C

d)

Figure 43c—TKIP encapsulation block diagram

TKIP represents the WEP seed as a WEP IV and RC4 key and passes these with each MPDU to
WEP for generation of the ICV (see 7.1.3.6), and for encryption of the plaintext MPDU, including
all or part of the MIC, if present. WEP uses the WEP seed as a WEP default key, identified by a key
identifier associated with the temporal key.

NOTE—When the TSC space is exhausted, the choices available to an implementation are to replace the tem-
poral key with a new one or to end communications. Reuse of any TSC value compromises already sent traffic.
Note that retransmitted MPDUs reuse the TSC without any compromise of security. The TSC is large enough,
however, that TSC space exhaustion should not be an issue.

In Figure 43¢, the TKIP-mixed transmit address and key (TTAK) denotes the intermediate key produced by
Phase 1 of the TKIP mixing function (see 8.3.2.5).

8.3.2.1.2 TKIP decapsulation

TKIP enhances the WEP decapsulation process with the following additional steps:

a)

b)

d)

e)

Before WEP decapsulates a received MPDU, TKIP extracts the TSC sequence number and key
identifier from the WEP IV and the extended IV. TKIP discards a received MPDU that violates the
sequencing rules (see 8.3.2.6) and otherwise uses the mixing function to construct the WEP seed.

TKIP represents the WEP seed as a WEP IV and RC4 key and passes these with the MPDU to WEP
for decapsulation.

If WEP indicates the ICV check succeeded, the implementation reassembles the MPDU into an
MSDU. If the MSDU defragmentation succeeds, the receiver verifies the TKIP MIC. If MSDU
defragmentation fails, then the MSDU is discarded.

The MIC verification step recomputes the MIC over the MSDU SA, DA, Priority, and MSDU Data
fields (but not the TKIP MIC field). The calculated TKIP MIC result is then compared bit-wise
against the received MIC.

If the received and the locally computed MIC values are identical, the verification succeeds, and
TKIP shall deliver the MSDU to the upper layer. If the two differ, then the verification fails; the
receiver shall discard the MSDU and shall engage in appropriate countermeasures.

Figure 43d depicts this process.

44

Copyright © 2004 IEEE. All rights reserved.

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS

IEEE
Std 802.11i-2004

MIC Key
TA
—» Phase 1
T | key mixing TTAK‘
| .| Phase2 |WEPSeed
-| keymixing
TKIPTSC | unmix| TSC DA + SA + Priority Michael
— *1sc +PlaintextMSDU| -
WEP MIC'
In-sequence | Decapsulation —*| Reassemble ¥ >
] MPDU Plaintext MIC M|C=1
Ciphertext MPDU MPDU MIC?
MSDU with failed
Out-of-sequence TKIPMIC
MPDU 4
Countermeasures

Figure 43d—TKIP decapsulation block diagram

8.3.2.2 TKIP MPDU formats

TKIP reuses the pre-RSNA WEP MPDU format. It extends the MPDU by 4 octets to accommodate an
extension to the WEP IV, denoted by the Extended IV field, and extends the MSDU format by 8 octets to
accommodate the new MIC field. TKIP inserts the Extended IV field immediately after the WEP 1V field
and before the encrypted data. TKIP appends the MIC to the MSDU Data field; the MIC becomes part of the
encrypted data.

Once the MIC is appended to the MSDU data, the added MIC octets are considered part of the MSDU for
subsequent fragmentation.

Figure 43e depicts the layout of the encrypted MPDU when using TKIP. Note the figure only depicts the
case when the MSDU can be encapsulated in a single MPDU.

< Encrypted »
MAC IV / KeylD Extended IV _ mIC Icv FCS
Header 4 octets 4 octets Data (PDU) >=1 octets 8 octets 4 octets | 4 octets
\\\ [
—— ——
e T RS
TSC1 WE'[Dfieed TSC0 || Rsvd 'f\’/" Klgy TSC2 TSC3 TSC4 TSC5
b0 b4 b5 b6 b7
Expanded IM |4 ;I
I‘ V3. rl
Figure 43e—Construction of expanded TKIP MPDU
45

Copyright © 2004 IEEE. All rights reserved.

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

The ExtIV bit in the Key ID octet indicates the presence or absence of an extended I'V. If the ExtIV bit is 0,
only the nonextended IV is transferred. If the ExtIV bit is 1, an extended IV of 4 octets follows the original
IV. For TKIP the ExtIV bit shall be set, and the Extended IV field shall be supplied. The ExtIV bit shall be 0
for WEP frames. The Key ID field shall be set to the key index supplied by the MLME-SETKEY S.request
primitive for the key used in encapsulation of the frame.

TSCS is the most significant octet of the TSC, and TSCO is the least significant. Octets TSCO and TSC1
form the IV sequence number and are used with the TKIP Phase 2 key mixing. Octets TSC2-TSCS5 are used
in the TKIP Phase 1 key hashing and are in the Extended IV field. When the lower 16-bit sequence number
rolls over (0XFFFF — 0x0000), the extended IV value, i.c., the upper 32 bits of the entire 48-bit TSC, shall
be incremented by 1.

NOTE—The rationale for this construction is as follows:
— Aligning on word boundaries eases implementation on legacy devices.
— Adding 4 octets of extended IV eliminates TSC exhaustion as a reason to rekey.

— Key ID octet changes. Bit 5 indicates that an extended IV is present. The receiver/transmitter interprets the
4 octets following the Key ID as the extended IV. The receiving/transmitting STA also uses the value of
octets TSCO and TSCI1 to detect that the cached TTAK must be updated.

The Extended IV field shall not be encrypted.
WEPSeed[1] is not used to construct the TSC, but is set to (TSC1 | 0x20) & 0x7f.

TKIP shall encrypt all the MPDUs generated from one MSDU under the same temporal key.
8.3.2.3 TKIP MIC

Flaws in the IEEE 802.11 WEP design cause it to fail to meet its goal of protecting data traffic content from
casual eavesdroppers. Among the most significant WEP flaws is the lack of a mechanism to defeat message
forgeries and other active attacks. To defend against active attacks, TKIP includes a MIC, named Michael.
This MIC offers only weak defenses against message forgeries, but it constitutes the best that can be
achieved with the majority of legacy hardware. TKIP uses different MIC keys depending on the direction of
the transfer as described in 8.6.1 and 8.6.2.

Annex H contains an implementation of the TKIP MIC. It also provides test vectors for the MIC.
8.3.2.3.1 Motivation for the TKIP MIC

Before defining the details of the MIC, it is useful to review the context in which this mechanism operates.
Active attacks enabled by the original WEP design include the following:

— Bit-flipping attacks

— Data (payload) truncation, concatenation, and splicing

— Fragmentation attacks

— Iterative guessing attacks against the key

— Redirection by modifying the MPDU DA or RA field

— Impersonation attacks by modifying the MPDU SA or TA field

The MIC makes it more difficult for any of these attacks to succeed.
All of these attacks remain at the MPDU level with the TKIP MIC. The MIC, however, applies to the
MSDU, so it blocks successful MPDU-level attacks. TKIP applies the MIC to the MSDU at the transmitter

and verifies it at the MSDU level at the receiver. If a MIC check fails at the MSDU level, the implementa-
tion shall discard the MSDU and invoke countermeasures (see 8.3.2.4).

46 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Figure 43f depicts different peer layers communicating.

Upper Layers/ILLC

MSDLU MEDU
MEDU+MIC <] MSDU+MIC
WMFDULs) o WMPDU(s) 802.11

Figure 43f—TKIP MIC relation to IEEE 802.11 processing (informative)

This figure depicts an architecture where the MIC is logically appended to the raw MSDU in response to the
MA-UNITDATA .request primitive. The TKIP MIC is computed over

— The MSDU DA

— The MSDU SA

— The MSDU Priority (reserved for future use)
— The entire unencrypted MSDU data (payload)

The DA field, SA field, three reserved octets, and a 1-octet Priority field are used only for calculating the
MIC. The Priority field shall be 0 and reserved for future use. The fields in Figure 43g are treated as an octet
stream using the conventions described in 7.1.1.

6 6 1 3 M 1 1 1 1 1 1 1 1 octets
DA SA Priority 0 Data M MM M M| M| M M
0 1 2 3 4 5 6 7

Figure 43g—TKIP MIC processing format

TKIP appends the MIC at the end of the MSDU payload. The MIC is 8 octets in size for Michael. The IEEE
802.11 MAC then applies its normal processing to transmit this MSDU-with-MIC as a sequence of one or
more MPDUs. In other words, the MSDU-with-MIC can be partitioned into one or more MPDUs, the WEP
ICV is calculated over each MPDU, and the MIC can even be partitioned to lie in two MPDUs after frag-
mentation. The TKIP MIC augments, but does not replace, the WEP ICV. Because the TKIP MIC is a weak
construction, TKIP protects the MIC with encryption, which makes TKIP MIC forgeries more difficult. The
WEP ICV helps to prevent false detection of MIC failures that would cause countermeasures to be invoked.

The receiver reverses this procedure to reassemble the MSDU; and, after the MSDU has been logically reas-
sembled, the IEEE 802.11 MAC verifies the MIC prior to delivery of the MSDU to upper layers. If the MIC
validation succeeds, the MAC delivers the MSDU. If the MIC validation fails, the MAC shall discard the
MSDU and invoke countermeasures (see 8.3.2.4).

NOTE—TKIP calculates the MIC over the MSDU rather than the MPDU, because doing so increases the implementa-
tion flexibility with pre-existing WEP hardware.

It should be noted that a MIC alone cannot provide complete forgery protection, as it cannot defend against
replay attacks. Therefore, TKIP provides replay detection by TSC sequencing and ICV validation. Further-
more, if TKIP is utilized with a GTK, an insider STA can masquerade as any other STA belonging to the

group.

Copyright © 2004 IEEE. Al rights reserved. 47

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

8.3.2.3.2 Definition of the TKIP MIC

Michael generates a 64-bit MIC. The Michael key consists of 64 bits, represented as an 8-octet sequence,
kg...k7. This is converted to two 32-bit words, K, and K. Throughout this subclause, all conversions
between octets and 32-bit words shall use the little endian conventions, given in 7.1.1.

Michael operates on each MSDU including the Priority field, 3 reserved octets, SA field, and DA field. An
MSDU consists of octets my,...m,,_; where n is the number of MSDU octets, including SA, DA, Priority, and
Data fields. The message is padded at the end with a single octet with value 0x5a, followed by between 4
and 7 zero octets. The number of zero octets is chosen so that the overall length of the padded MSDU is a
multiple of four. The padding is not transmitted with the MSDU; it is used to simplify the computation over
the final block. The MSDU is then converted to a sequence of 32-bit words My, ..M. |, where N = (n+5)/41,
and where [a | means to round a up to the nearest integer. By construction, M, w1 =0and My, #0.

The MIC value is computed iteratively starting with the key value (K and K;) and applying a block function
b for every message word, as shown in Figure 43h. The algorithm loop runs a total of N times (7 takes on the
values 0 to N-1 inclusive), where N is as above, the number of 32-bit words composing the padded MSDU.
The algorithm results in two words (/ and r), which are converted to a sequence of 8 octets using the least-
significant-octet-first convention:

— MO=1/&Oxff

— MI = (1/0x100) & Oxff

— M2 = (I/0x10000) & Oxff
— M3 = (1/0x1000000) & Oxff
— M4=r&O0xff

— M5 = (+/0x100) & Oxff

— M6 = (+/0x10000) & Oxff
— M7= (+/0x1000000) & Oxff

This is the MIC value. The MIC value is appended to the MSDU as data to be sent.

Input: Key (K0, K1) and padded MSDU (represented as 32-hit words) M0, WUN-T
Output: MIC value (W3, ¥1)
FICHAELCKD, K17, (0D, N0

(1A« (KO, K1)

for r=0to N-1 do
T 1@ M-
i e bl

return (Lf)

Figure 43h—Michael message processing

Figure 43i defines the Michael block function 4. It is a Feistel-type construction with alternating additions
and XOR operations. It uses <<< to denote the rotate-left operator on 32-bit values, >>> for the rotate-right
operator, and XSWAP for a function that swaps the position of the 2 least significant octets. It also uses the
position of the two most significant octets in a word.

48 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Input: (1r)

Output: {1 1)

ALR)
Fe— r® (e 17
fe— (f + 1) mod 232
Fe— ra@ A AR
Fe (1 +) mod 232
Ferm (e 3)
fe— (f + 1) mod 232
Fe—r@® (e
fe— () +¢) mod 232
return (1, £

Figure 43i—Michael block function

8.3.2.4 TKIP countermeasures procedures

The TKIP MIC trades off security in favor of implementability on pre-RSNA devices. Michael provides
only weak protection against active attacks. A failure of the MIC in a received MSDU indicates a probable
active attack. A successful attack against the MIC would mean an attacker could inject forged data frames
and perform further effective attacks against the encryption key itself. If TKIP implementation detects a
probable active attack, TKIP shall take countermeasures as specified in this subclause. These countermea-
sures accomplish the following goals:

— MIC failure events should be logged as a security-relevant matter. A MIC failure is an almost certain
indication of an active attack and warrants a follow-up by the system administrator.

— The rate of MIC failures must be kept below two per minute. This implies that STAs and APs detect-
ing two MIC failure events within 60 s must disable all receptions using TKIP for a period of 60 s.
The slowdown makes it difficult for an attacker to make a large number of forgery attempts in a
short time.

— As an additional security feature, the PTK and, in the case of the Authenticator, the GTK should be
changed.

Before verifying the MIC, the receiver shall check the FCS, ICV, and TSC for all related MPDUs. Any
MPDU that has an invalid FCS, an incorrect ICV, or a TSC value that is less than or equal to the TSC replay
counter shall be discarded before checking the MIC. This avoids unnecessary MIC failure events. Checking
the TSC before the MIC makes countermeasure-based denial-of-service attacks harder to perform. While the
FCS and ICV mechanisms are sufficient to detect noise, they are insufficient to detect active attacks. The
FCS and ICV provide error detection, but not integrity protection.

A single counter or timer shall be used to log MIC failure events. These failure events are defined as
follows:

— For an Authenticator:
— Detection of a MIC failure on a received unicast frame.
— Reeceipt of Michael MIC Failure Report frame.
— For a Supplicant:
— Detection of a MIC failure on a received unicast or broadcast/multicast frame.

— Attempt to transmit a Michael MIC Failure Report frame.

The number of MIC failures is accrued independent of the particular key context. Any single MIC failure,
whether detected by the Supplicant or the Authenticator and whether resulting from a group MIC key failure
or a pairwise MIC key failure, shall be treated as cause for a MIC failure event.

Copyright © 2004 IEEE. Al rights reserved. 49

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

The Supplicant uses a single Michael MIC Failure Report frame to report a MIC failure event to the Authen-
ticator. A Michael MIC Failure Report is an EAPOL-Key frame with the following Key Information field
bits set to 1: MIC bit, Error bit, Request bit, Secure bit. The Supplicant protects this message with the current
PTK; the Supplicant uses the KCK portion of the PTK to compute the IEEE 802.1X EAPOL MIC.

MLME-MICHEALMICFAILURE.indication primitive is used by the IEEE 802.11 MAC to attempt to indi-
cate a MIC failure to the local IEEE 802.1X Supplicant or Authenticator. MLME-EAPOL.request primitive
is used by the Supplicant to send the EAPOL-Key frame containing the Michael MIC Failure Report.
MLME-EAPOL .confirm primitive indicates to the Supplicant when an IEEE 802.11 MAC acknowledgment
(ACK) has been received for this EAPOL-Key frame.

The first MIC failure shall be logged, and a timer initiated to enable enforcement of the countermeasures. If
the MIC failure event is detected by the Supplicant, it shall also report the event to the AP by sending a
Michael MIC Failure Report frame.

If a subsequent MIC failure occurs within 60 s of the most recent previous failure, then a STA whose IEEE
802.1X entity has acted as a Supplicant shall deauthenticate (as defined in 11.3.3) itself or deauthenticate all
the STAs with a security association if its IEEE 802.1X entity acted as an Authenticator. For an IBSS STA,
both Supplicant and Authenticator actions shall be taken. Furthermore, the device shall not receive or trans-
mit any TKIP-encrypted data frames, and shall not receive or transmit any unencrypted data frames other
than IEEE 802.1X messages, to or from any peer for a period of at least 60 s after it detects the second fail-
ure. If the device is an AP, it shall disallow new associations using TKIP during this 60 s period; at the end
of the 60 s period, the AP shall resume normal operations and allow STAs to (re)associate. If the device is an
IBSS STA, it shall disallow any new security associations using TKIP during this 60 s period. If the device
is a Supplicant, it shall first send a Michael MIC Failure Report frame prior to revoking its PTKSA and
deauthenticating itself.

The aMICFailTime attribute shall contain the sysUpTime value at the time the MIC failure was logged.
8.3.2.4.1 TKIP countermeasures for an Authenticator

The countermeasures used by an Authenticator are depicted in Figure 43j and described as follows:
a) For an Authenticator’s STA that receives a frame with a MIC error,
1) Discard the frame.
2) Increment the MIC failure counter, dot 11RSNAStatsTKIPLocalMIC-Failures.
3) Generate a MLME-MICHAELMICFAILURE.indication primitive.

b) For an Authenticator that receives a MLME-MICHAELMICFAILURE.indication primitive or a
Michael MIC Failure Report frame,

1) If it is a Michael MIC Failure Report frame, then increment dot11RSNAStatsTKIP-
RemoteMICFailures.

2) If this is the first MIC failure within the past 60 s, initialize the countermeasures timer.

3) Ifless than 60 s have passed since the most recent previous MIC failure, the Authenticator shall
deauthenticate and delete all PTKSAs for all STAs using TKIP. If the current GTKSA uses
TKIP, that GTKSA shall be discarded, and a new GTKSA constructed, but not used for 60 s.
The Authenticator shall refuse the construction of new PTKSAs using TKIP as one or more of
the ciphers for 60 s. At the end of this period, the MIC failure counter and timer shall be reset,
and creation of PTKSAs accepted as usual.

4) If the Authenticator is using IEEE 802.1X authentication, the Authenticator shall transition the
state of the IEEE 802.1X Authenticator state machine to the INITIALIZE state. This will
restart the IEEE 802.1X state machine. If the Authenticator is instead using PSKs, this step is
omitted.

50 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Note that a Supplicant’s STA may deauthenticate with a reason code of MIC failure if it is an ESS STA. The
Authenticator shall not log the deauthenticate as a MIC failure event to prevent denial-of-service attacks
through deauthentications. The Supplicant’s STA must report the MIC failure event through the Michael
MIC Failure Report frame in order for the AP to log the event.

The requirement to deauthenticate all STAs using TKIP will include those using CCMP as a pairwise cipher
if they are also using TKIP as the group cipher.

|

Wait for MIC failure

No
Timer =0

Logevent

Yes

Deauthenticate all STAs if not an IBSS
Revoke all PTKs and GTK
Generate new GTK

}

Wait 60 s

l

Configure new GTK
Enable associations if not an IBSS

Figure 43j—Authenticator MIC countermeasures
8.3.2.4.2 TKIP countermeasures for a Supplicant

The countermeasures used by a Supplicant are depicted in Figure 43k and described as follows:
a) Fora Supplicant’s STA that receives a frame with a MIC error,
1) Increment the MIC failure counter, dot 1 1RSNAStatsTKIPLocalMIC-Failures.
2) Discard the offending frame.
3) Generate a MLME-MICHAELMICFAILURE.indication primitive.

b) For a Supplicant that receives an MLME-MICHAELMICFAILURE.indication primitive from its
STA,

1) Send a Michael MIC Failure Report frame to the AP.
2) Ifthis is the first MIC failure within the past 60 s, initialize the countermeasures timer.

3) Ifless than 60 s have passed since the most recent previous MIC failure, delete the PTKSA and
GTKSA. Deauthenticate from the AP and wait for 60 s before (re)establishing a TKIP associa-
tion with the same AP. A TKIP association is any IEEE 802.11 association that uses TKIP for
its pairwise or group cipher suite.

c¢) Ifanon-AP STA receives a deauthenticate frame with the reason code “MIC failure,” it cannot be
certain that the frame has not been forged, as it does not contain a MIC. The STA may attempt asso-
ciation with this, or another, AP. If the frame was genuine, then it is probable that attempts to
associate with the same AP requesting the use of TKIP will fail because the AP will be conducting
countermeasures.

Copyright © 2004 IEEE. Al rights reserved. 51

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

A

Wait for MIC failure

A 4

Send Michael MIC Failure Report
frame

No
Timer =0

Logevent

Yes

Stop receiving Class 3 frames if not an IBSS
Stop receiving Class 1 frames if in an IBSS
Wait for send Report frame to complete
Deauthenticate the AP if not in IBSS
Revoke PTK and GTK

A 4

Wait 60 s before associating to same AP
or roam to a new AP if not IBSS, or
sending data in an IBSS

Figure 43k—Supplicant MIC countermeasures

8.3.2.5 TKIP mixing function

Annex H defines a C-language reference implementation of the TKIP mixing function. It also provides test
vectors for the mixing function.

The mixing function has two phases. Phase 1 mixes the appropriate temporal key (pairwise or group) with
the TA and TSC. A STA may cache the output of this phase to reuse with subsequent MPDUs associated
with the same temporal key and TA. Phase 2 mixes the output of Phase 1 with the TSC and temporal key
(TK) to produce the WEP seed, also called the per-frame key. The WEP seed may be precomputed before it
is used. The two-phase process may be summarized as follows:

TTAK := Phasel (TK, TA, TSC)
WEP seed := Phase2?2 (TTAK, TK, TSC)
8.3.2.5.1 S-Box

Both Phase 1 and Phase 2 rely on an S-box, defined in this subclause. The S-box substitutes one 16-bit value
with another 16-bit value. This function may be implemented as a table look up.

NOTE—The S-box is a nonlinear substitution. The table look-up can be organized as either a single table with 65 536

entries and a 16-bit index (128K octets of table) or two tables with 256 entries and an 8-bit index (1024 octets for both
tables). When the two smaller tables are used, the high-order octet is used to obtain a 16-bit value from one table, the

52 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

low-order octet is used to obtain a 16-bit value from the other table, and the S-box output is the XOR (@) of the two 16-
bit values. The second S-box table is an octet-swapped replica of the first.

#define S (v16) (Sbox[0] [Lo8(v1l6)] » Sbox[1][Hi8 (v16)])
/* 2-byte by 2-byte subset of the full AES S-box table */
const uléb Sbox[2] [256]= /* Sbox for hash (can be in ROM) */
{ {
0xCo6A5,0xF884, 0xEE99, 0xF68D, 0xFFOD, 0xD6BD, 0xDEB1, 0x9154,
0x6050,0x0203, 0xCEA9,0x567D, 0xE719, 0xB562, 0x4DE6, 0XEC9A,
0x8F45,0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0XxFBOB,
0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
0x75C2,0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
0x685C, 0x51F4,0xD134,0xF908, 0xE293, 0xAB73,0x6253, 0x2A3F,
0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
0x0E09,0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0XEA9F,
0x121B,0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
0xA4F6,0x764D,0xB761,0x7DCE, 0x527B, 0xDD3E, 0x5E71,0x1397,
0xA6F5,0xB968, 0x0000,0xC12C, 0x4060, 0xE31F,0x79C8, 0xB6ED,
0xD4BE, 0x8D46, 0x67D9,0x724B, 0x94DE, 0x98D4, 0xBOE8, 0x854A,
0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655,0x1194,
0x8ACF,0xE910, 0x0406, 0xFE81, 0xAQOF0, 0x7844, 0x25BA, 0x4BE3,
0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC,0x7048, 0xF104,
0x63DF, 0x77C1l, 0xAF75,0x4263,0x2030, 0xE51A, 0xFDOE, 0xBF6D,
0x814C,0x1814,0x2635,0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
0x9357,0x55F2, 0xFC82,0x7A47, 0xC8AC, 0xBAE7,0x322B, 0xE695,
0xCOAO0,0x1998, 0x9ED1, 0xA37F, 0x4466,0x547E, 0x3BAB, 0x0B83,
0x8CCA, 0xC729,0x6BD3, 0x283C,0xA779,0xBCE2, 0x161D, 0xAD76,
0xDB3B, 0x6456, 0x744E,0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4,0xD337, 0xF28B,
0xD532,0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49EQ,
0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
0x6FD5, 0xF088, 0x4A6F, 0x5C72,0x3824,0x57F1,0x73C7,0x9751,
0xCB23,0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
0xE090,0x7C42,0x71C4,0xCCAA, 0x90D8, 0x0605,0xF701,0x1C12,
0xC2A3, 0x6A5F, 0XxAEF9,0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
0xD938, 0xEB13, 0x2BB3,0x2233, 0xD2BB, 0xA970,0x0789, 0x33A7,
0x2DB6,0x3C22,0x1592,0xC920, 0x8749, OxAAFF,0x5078, 0xA57A,
0x038F, 0x59F8, 0x0980,0x1A17,0x65DA, 0xD731,0x84C6, 0xDOBS,
0x82C3, 0x29B0, 0x5A77,0x1E11, 0x7BCB, 0XxA8FC, 0x6DD6, 0x2C3A,
}I
{ /* second half of table is byte-reversed version of first! */
0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0xODFF, 0xBDD6, 0xB1DE, 0x5491,
0x5060,0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0Xx9AEC,
0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0XEBB2, 0xC98E, 0x0BFB,
0xEC41,0x67B3, 0XxFD5F, OxEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
0xC275,0x1CE1l, OXxAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
0x5C68,0xF451,0x34D1,0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A4,
0x0C08,0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137,0x0F0A, 0xB52F,
0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
0x1B12,0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, OXEEB4, OXFB5B,
0xF6A4,0x4D76,0x61B7,0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
0xF5A6,0x68B9, 0x0000, 0x2CC1, 0x6040,0x1FE3,0xC879, 0XEDBG,
0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0O, 0x4A85,
0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 09411,
0xCF8A,0x10E9, 0x0604,0x81FE, 0xFOAQO, 0x4478, 0xBA25, 0xE34B,
0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21,0x4870, 0x04F1,
0xDF63,0xC177,0x75AF,0x6342,0x3020, 0x1AE5, Ox0EFD, Ox6DBF,
0x4C81,0x1418,0x3526,0x2FC3, 0xE1BE, 0xA235,0xCC88, 0x392E,

Copyright © 2004 IEEE. Al rights reserved. 53

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

0x5793, 0xF255,0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
0xA0C0, 0x9819,0xD19E, Ox7FA3,0x6644,0x7E54, 0xAB3B, 0x830B,
0xCAB8C, 0x29C7, 0xD36B, 0x3C28,0x79A7, 0xE2BC,0x1D16, 0x76AD,
0x3BDB, 0x5664,0x4E74,0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4BS8,
0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
0x32D5,0x438B, 0x596FE, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
0xB4D8, 0OXFAAC, 0x07F3, 0x25CF, OXAFCA, 0x8EF4, 0xE947,0x1810,
0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438,0xF157, 0xC773,0x5197,
0x23CB, 0x7CAl1l, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
0x90E0, 0x427C,0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7,0x121C,
0xA3C2, 0x5F6A, 0XF9AE, 0xD069, 0x9117,0x5899, 0x273A, 0xB927,
0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
0xB62D, 0x223C,0x9215,0x20C9, 04987, 0xFFAA,0x7850, 0x7AAS5,
0x8F03,0xF859,0x8009,0x171A, 0xDA65,0x31D7,0xC684, 0xB8DO,
0xC382,0xB029, 0x775A,0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
}
}i

8.3.2.5.2 Phase 1 Definition (Figure 43l)

The inputs to Phase 1 of the temporal key mixing function shall be a temporal key (7K), the TA, and the
TSC. The temporal key shall be 128 bits in length. Only the 32 MSBs of the TSC and all of the temporal key
are used in Phase 1. The output, TTAK, shall be 80 bits in length and is represented by an array of 16-bit val-
ues: TTAKy TTAK| TTAK, TTAK; TTAK,.

The description of the Phase 1 algorithm treats all of the following values as arrays of 8-bit values: 74..T45,
TK,..TK 5. The T4 octet order is represented according to the conventions from 7.1.1, and the first 3 octets
represent the OUI.

The XOR (@) operation, the bit-wise-and (&) operation, and the addition (+) operation are used in the
Phase 1 specification. A loop counter, i, and an array index temporary variable, j, are also employed.

One function, Mk16, is used in the definition of Phase 1. The function Mk16 constructs a 16-bit value from
two 8-bit inputs as Mk16(X,Y) = (256-X)+Y.

Two steps make up the Phase 1 algorithm. The first step initializes 774K from 7.SC and TA. The second step
uses an S-box to iteratively mix the keying material into the 80-bit 774K. The second step sets the
PHASE1 LOOP COUNT to 8.

Input: transmit address 7A0... TAS, Temporal Key TRO. TK15 and 7500, 7505
Cutput: intermediate key TTARD.. T TAKA
PHASET-KEY-MIKING{TAD.. TAS, TKO..TK1S, TR0, T508)
PHASET_STEP1:
TTAKD « METE{TRC3, TS02)
TTAKT « METE[TSCh, TSCT4)
TTARZ « MEIB(TAT TAD)
TTAKS « MEIB(TAT TAZ)
TTARKA « MEIB(TAS TA4)
PHASET _STEPZ:
for /=010 PHASE1_LOOPF_COUNT-1
J= 208N
TTAKD « TTAKD +S[TTAEA @ MKIB(TK + THI+)]
TTAKT « TTAK! + S[TTAED @& MKIB(TKE+ THL+)]
TTARZ « TTARZ +S[TTAET @ MKIB(TRI+ THE+)]
TTARS « TTAKS +5[TTAEZ @ MEIB(TK 3+, TK12+10]
TTAKA « TTAKA +S[TTAES @ MEIB(TKI H TRO+)] +1

Figure 431—Phase 1 key mixing

54 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

NOTES

1—The TA is mixed into the temporal key in Phase 1 of the hash function. Implementations can achieve a significant
performance improvement by caching the output of Phase 1. The Phase 1 output is the same for 216 = 65 536 consecu-
tive frames from the same temporal key and TA. Consider the simple case where a STA communicates only with an AP.
The STA will perform Phase 1 using its own address, and the TTAK will be used to protect traffic sent to the AP. The
STA will perform Phase 1 using the AP address, and it will be used to unwrap traffic received from the AP.

2—The cached TTAK from Phase 1 will need to be updated when the lower 16 bits of the TSC wrap and the upper
32 bits need to be updated.

8.3.2.5.3 Phase 2 definition (see Figure 43m)

The inputs to Phase 2 of the temporal key mixing function shall be the output of Phase 1 (T74K) together
with the temporal key and the TSC. The TTAK is 80-bits in length. Only the 16 LSBs of the TSC are used in
Phase 2. The temporal key is 128 bits. The output is the WEP seed, which is a per-frame key, and is 128 bits
in length. The constructed WEP seed has an internal structure conforming to the WEP specification. In other
words, the first 24 bits of the WEP seed shall be transmitted in plaintext as the WEP IV. As such, these 24
bits are used to convey lower 16 bits of the TSC from the sender (encryptor) to the receiver (decryptor). The
rest of the TSC shall be conveyed in the Extended IV field. The temporal key and 774K values are repre-
sented as in Phase 1. The WEP seed is treated as an array of 8-bit values: WEPSeed,,... WEPSeed 5. The
TSC shall be treated as an array of 8-bit values: TSCy ISC| TSC, TSC3 TSC,4 TSCs.

The pseudo-code specifying the Phase 2 mixing function employs one variable: PPK, which is 96 bits long.
The PPK is represented as an array of 16-bit values: PPK..PPKs. The pseudo-code also employs a loop
counter, i. As detailed in this subclause, the mapping from the 16-bit PPK values to the 8-bit WEPseed val-
ues is explicitly little endian to match the endian architecture of the most common processors used for this
application.

The XOR (@) operation, the addition (+) operation, the AND (&) operation, the OR (|) operation, and the
right bit shift (>>) operation are used in the specification of Phase 2.

The algorithm specification relies on four functions:
— The first function, Lo8, references the 8 LSBs of the 16-bit input value.
— The second function, Hi8, references the 8 MSBs of the 16-bit value.
— The third function, RofR1, rotates its 16-bit argument 1 bit to the right.

— The fourth function, Mk16, is already used in Phase 1, defined by Mk16(X,Y) = (256-X)+Y, and con-
structs a 16-bit output from two 8-bit inputs.

NOTE—The rotate and addition operations in STEP2 make Phase 2 particularly sensitive to the endian archi-
tecture of the processor, although the performance degradation due to running this algorithm on a big endian
processor should be minor.

Phase 2 comprises three steps:

— STEP1 makes a copy of 7TAK and brings in the TSC.

— STEP2 is a 96-bit bijective mixing, employing an S-box.

— STEP3 brings in the last of the temporal key 7K bits and assigns the 24-bit WEP 1V value.
The WEP 1V format carries 3 octets. STEP3 of Phase 2 determines the value of each of these three octets.
The construction was selected to preclude the use of known RC4 weak keys. The recipient can reconstruct

the 16 LSBs of the TSC used by the originator by concatenating the third and first octets, ignoring the sec-
ond octet. The remaining 32 bits of the TSC are obtained from the Extended IV field.

Copyright © 2004 IEEE. Al rights reserved. 55

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Input: intermediate key TTAKD.. TTAKA, TK and TKIP sequence counter 750G
Cutput: WEP Seed WEPSeedd. .. WEFPSeedlS
PHASEZ-KEY-MIXING(TTAKD, . TTAKA TKO. TK15, TECO.. T5CE)
PHASEZ STEP1:
PPED — TTAKD
FRET «— TTAKI
PPREZ — TTAKZ
PPES «— TTAKS
FREL «— TTAK4
PPER «— TTAK4 + MK1B(TSCT, TSCO)
PHASEZ STEPZ:
FPPED «— FPKD + S[FPES @ MEIB(TKT THDY]
PPET « FPK1 + S[PPKD & MEIB(TES TE2]]
PPEZ « FPPE2 + S[FPE1 @ MEIB(THE THAY]
PPES « FPK3 + S[PPEZ @ MEIB(TET THE]]
PPE4 «— FPE4 + S[FPE3 & MEIB(THY THRY]
PPES «— FPPRE + S[PPE4 @ MEIB(TKI TE10)]
PPED «— FPKD + RotR1(FPES @ MEIBITHIZ THIZ)
PPET «— FPPK1 + RotR1(FPED @ MEIB(THKIS TE1 A
PPED « PPK2 + RotR1(FPEI
PRES «— PPKI + RotR [PPED)
PPE4 «— FPPK4 + RotR1(FPED)
PPER «— PPKS + RotR1(FPPES
PHASEZ STEPI:
WEFSeedl « T5CH
WEFSeed! « (TSC1 | 0x20) &0x7FF
WEFSeed? « TSCO
WEFSeedd « LdB((PFEES@® MEIGITH TRO)) == 1)
fori=Dto0 5
WEFSeedd +2-) « LoB(PFK)
WEPSeedb+2) « HEB(FPK)
end
return WEFSeedl. . WEFSeed15

Figure 43m—Phase 2 key mixing

8.3.2.6 TKIP replay protection procedures

TKIP implementations shall use the TSC field to defend against replay attacks by implementing the follow-
ing rules:

56

a)
b)

c)

d)

Each MPDU shall have a unique TKIP TSC value.

Each transmitter shall maintain a single TSC (48 bit counter) for each PTKSA, GTKSA, and
STAKeySA.

The TSC shall be implemented as a 48-bit monotonically incrementing counter, initialized to 1 when
the corresponding TKIP temporal key is initialized or refreshed.

The WEP 1V format carries the 16 LSBs of the 48-bit TSC, as defined by the TKIP mixing function
(Phase 2, STEP3). The remainder of the TSC is carried in the Extended IV field.

A receiver shall maintain a separate set of TKIP TSC replay counters for each PTKSA, GTKSA, and
STAKeySA.

TKIP replay detection takes place after the MIC verification and any reordering required by ACK
processing. Thus, a receiver shall delay advancing a TKIP TSC replay counter until an MSDU
passes the MIC check, to prevent attackers from injecting MPDUs with valid ICVs and TSCs, but
invalid MICs.

NOTE—This works because if an attacker modifies the TSC, then the encryption key is modified and hence
both the ICV and MIC will ordinarily decrypt incorrectly, causing the received MPDU to be dropped.

Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

g) For each PTKSA, GTKSA, and STAKeySA, the receiver shall maintain a separate replay counter
for each frame priority and shall use the TSC recovered from a received frame to detect replayed
frames, subject to the limitations on the number of supported replay counters indicated in the RSN
Capabilities field, as described in 7.3.2.25. A replayed frame occurs when the TSC extracted from a
received frame is less than or equal to the current replay counter value for the frame’s priority. A
transmitter shall not reorder frames with different priorities without ensuring that the receiver sup-
ports the required number of replay counters. The transmitter shall not reorder frames within a
replay counter, but may reorder frames across replay counters. One possible reason for reordering
frames is the IEEE 802.11 MSDU priority.

IEEE 802.11 does not define a method to signal frame priority.

h) A receiver shall discard any MPDU that is received out of order and shall increment the value of
dot11RSNAStatsTKIPReplays for this key.

8.3.3 CTR with CBC-MAC Protocol (CCMP)

This subclause specifies the CCMP, which provides confidentiality, authentication, integrity, and replay
protection. CCMP is mandatory for RSN compliance.

8.3.3.1 CCMP overview

CCMP is based on the CCM of the AES encryption algorithm. CCM combines CTR for confidentiality and
CBC-MAC for authentication and integrity. CCM protects the integrity of both the MPDU Data field and
selected portions of the IEEE 802.11 MPDU header.

The AES algorithm is defined in FIPS PUB 197. All AES processing used within CCMP uses AES with a
128-bit key and a 128-bit block size.

CCM is defined in IETF RFC 3610. CCM is a generic mode that can be used with any block-oriented
encryption algorithm. CCM has two parameters (M and L), and CCMP uses the following values for the
CCM parameters:

— M =8; indicating that the MIC is 8 octets.

— L =2; indicating that the Length field is 2 octets, which is sufficient to hold the length of the largest
possible IEEE 802.11 MPDU, expressed in octets.

CCM requires a fresh temporal key for every session. CCM also requires a unique nonce value for each
frame protected by a given temporal key, and CCMP uses a 48-bit packet number (PN) for this purpose.
Reuse of a PN with the same temporal key voids all security guarantees.

Annex H provides a test vector for CCM.

8.3.3.2 CCMP MPDU format

Figure 43n depicts the MPDU when using CCMP.

CCMP processing expands the original MPDU size by 16 octets, 8 octets for the CCMP Header field and
8 octets for the MIC field. The CCMP Header field is constructed from the PN, ExtIV, and Key ID sub-
fields. PN is a 48-bit PN represented as an array of 6 octets. PNS5 is the most significant octet of the PN, and
PNO is the least significant. Note that CCMP does not use the WEP ICV.

The ExtIV subfield (bit 5) of the Key ID octet signals that the CCMP Header field extends the MPDU

header by a total of 8 octets, compared to the 4 octets added to the MPDU header when WEP is used. The
ExtIV bit (bit 5) is always set to 1 for CCMP.

Copyright © 2004 IEEE. Al rights reserved. 57

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS
< Encrypted P
CCMP Header Data (PDU) MIC FCS
MAC Header A | 8 ocitets . >= 1 octets 8 octets 4 octets

PNO PN1 Rsvd Rsvd Elct Klgy PN2 PN3 PN4 PN5
b0 b4 b5 b6 b7
Key ID octet

Figure 43n—Expanded CCMP MPDU

Bits 67 of the Key ID octet are for the Key ID subfield.
The reserved bits shall be set to 0 and shall be ignored on reception.
8.3.3.3 CCMP encapsulation

The CCMP encapsulation process is depicted in Figure 430.

MAC header >
Construct
AAD
PIaintextMPDg .
A2, Priority | Encrypted
Construct CCM Data, MIC | Encrypted MPDU_
Nonce encryption gL -
Data R
TK
PN Increment
PN Construct
Keyld CCMP header "

Figure 430—CCMP encapsulation block diagram

CCMP encrypts the payload of a plaintext MPDU and encapsulates the resulting cipher text using the fol-
lowing steps:
a) Increment the PN, to obtain a fresh PN for each MPDU, so that the PN never repeats for the same
temporal key. Note that retransmitted MPDUs are not modified on retransmission.

b) Use the fields in the MPDU header to construct the additional authentication data (AAD) for CCM.
The CCM algorithm provides integrity protection for the fields included in the AAD. MPDU header
fields that may change when retransmitted are muted by being masked to 0 when calculating the
AAD.

¢) Construct the CCM Nonce block from the PN, A2, and the Priority field of the MPDU where A2 is
MPDU Address 2. The Priority field has a reserved value set to 0.

d) Place the new PN and the key identifier into the 8-octet CCMP header.

e) Use the temporal key, AAD, nonce, and MPDU data to form the cipher text and MIC. This step is
known as CCM originator processing.

58 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

f) Form the encrypted MPDU by combining the original MPDU header, the CCMP header, the
encrypted data and MIC, as described in 8.3.3.2.

The CCM reference describes the processing of the key, nonce, AAD, and data to produce the encrypted
output. See 8.3.3.3.1 through 8.3.3.3.5 for details of the creation of the AAD and nonce from the MPDU and
the associated MPDU-specific processing.

8.3.3.3.1 PN processing

The PN is incremented by a positive number for each MPDU. The PN shall never repeat for a series of
encrypted MPDUs using the same temporal key.

8.3.3.3.2 Construct AAD

The format of the AAD is shown in Figure 43p.

2 6 6 6 2 6 2 octets
FC SC
(bits 4,5,6,11,12,13=0) A1 A2 A3 . Ad Qc
(bit 14 =1) (bits 4.15-0)

Figure 43p—AAD construction

The AAD is constructed from the MPDU header. The AAD does not include the header Duration field,
because the Duration field value can change due to normal IEEE 802.11 operation (e.g., a rate change during
retransmission). For similar reasons, several subfields in the Frame Control field are masked to 0. AAD con-
struction is performed as follows:

a) FC—MPDU Frame Control field, with
1) Subtype bits (bits 4 5 6) masked to 0
2) Retry bit (bit 11) masked to 0
3) PwrMgt bit (bit 12) masked to 0
4) MoreData bit (bit 13) masked to 0
5) Protected Frame bit (bit 14) always set to 1
b) Al —-MPDU Address 1 field.
¢) A2 -MPDU Address 2 field.
d) A3 - MPDU Address 3 field.

e) SC-—MPDU Sequence Control field, with the Sequence Number subfield (bits 4-15 of the Sequence
Control field) masked to 0. The Fragment Number subfield is not modified.

f) A4 —-MPDU Address field, if present in the MPDU.

g) QC — Quality of Service Control field, if present, a 2-octet field that includes the MSDU priority;
this field is reserved for future use.

The length of the AAD is 22 octets when no A4 field and no QC field exist and 28 octets long when the
MPDU includes the A4 field.

8.3.3.3.3 Construct CCM nonce

The Nonce field occupies 13 octets, and its structure is shown in Figure 43q.

Copyright © 2004 IEEE. Al rights reserved. 59

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS
1 B] Odets
Priority
Octet A2 P

Prorty Reserved

bOb1 b2 b3 b4 b bE bY

Figure 43g—Nonce construction

The Nonce field has an internal structure of Priority Octet || A2 || PN (“||”” is concatenation), where
— This Priority Octet field shall be 0 and reserved for future use with IEEE 802.11 frame prioritization.

— MPDU address A2 field occupies octets 1-6. This shall be encoded with the octets ordered with A2
octet 0 at octet index 1 and A2 octet 5 at octet index 6.

— The PN field occupies octets 7—12. The octets of PN shall be ordered so that PNO is at octet index 12
and PNS5 is at octet index 7.

8.3.3.3.4 Construct CCMP header

The format of the 8-octet CCMP header is given in 8.3.3.2. The header encodes the PN, Key ID, and ExtIV
field values used to encrypt the MPDU.

8.3.3.3.5 CCM originator processing

CCM is a generic authenticate-and-encrypt block cipher mode, and in this amendment, CCM is used with
the AES block cipher.

There are four inputs to CCM originator processing:
a) Key: the temporal key (16 octets).
b) Nonce: the nonce (13 octets) constructed as described in 8.3.3.3.3.

c) Frame body: the frame body of the MPDU (1-2296 octets; 2296 = 2312 — 8 MIC octets — 8 CCMP
header octets).

d) AAD: the AAD (22-30 octets) constructed from the MPDU header as described in 8.3.3.3.2.

The CCM originator processing provides authentication and integrity of the frame body and the AAD as
well as confidentiality of the frame body. The output from the CCM originator processing consists of the
encrypted data and 8 additional octets of encrypted MIC (see Figure 43n).

8.3.3.4 CCMP decapsulation

Figure 43r depicts the CCMP decapsulation process.

60 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004
MAC header N
Construct o
AAD o
MIC e . Il
Encrypted MPDU »
A2, Priority _ Plaintext
"| Construet .| CCM data
PN .| MNonce "1 decryption v
Data o —
Key »
. ¥ Plaintext
YR "l Replay MPDU
.| check

Figure 43r—CCMP decapsulation block diagram

CCMP decrypts the payload of a cipher text MPDU and decapsulates a plaintext MPDU using the following
steps:

a) The encrypted MPDU is parsed to construct the AAD and nonce values.

b) The AAD is formed from the MPDU header of the encrypted MPDU.

¢) The nonce value is constructed from the A2, PN, and Priority Octet fields (reserved and set to 0).
d) The MIC is extracted for use in the CCM integrity checking.

e) The CCM recipient processing uses the temporal key, AAD, nonce, MIC, and MPDU cipher text
data to recover the MPDU plaintext data as well as to check the integrity of the AAD and MPDU
plaintext data.

f) The received MPDU header and the MPDU plaintext data from the CCM recipient processing may
be concatenated to form a plaintext MPDU.

g) The decryption processing prevents replay of MPDUs by validating that the PN in the MPDU is
greater than the replay counter maintained for the session.

See 8.3.3.4.1 through 8.3.3.4.3 for details of this processing.
8.3.3.4.1 CCM recipient processing
CCM recipient processing must use the same parameters as CCM originator processing.

There are four inputs to CCM recipient processing:
— Key: the temporal key (16 octets).
— Nonce: the nonce (13 octets) constructed as described in 8.3.3.3.3.

— Encrypted frame body: the encrypted frame body from the received MPDU. The encrypted frame
body includes an 8-octet MIC (9—2304 octets).

— AAD: the AAD (22-30 octets) that is the canonical MPDU header as described in 8.3.3.3.2.

The CCM recipient processing checks the authentication and integrity of the frame body and the AAD as
well as decrypting the frame body. The plaintext is returned only if the MIC check is successful.

There is one output from error-free CCM recipient processing:

— Frame body: the plaintext frame body, which is 8 octets smaller than the encrypted frame body.

Copyright © 2004 IEEE. Al rights reserved. 61

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

8.3.3.4.2 Decrypted CCMP MPDU

The decapsulation process succeeds when the calculated MIC matches the MIC value obtained from
decrypting the received encrypted MPDU. The original MPDU header is concatenated with the plaintext
data resulting from the successful CCM recipient processing to create the plaintext MPDU.

8.3.3.4.3 PN and replay detection

To effect replay detection, the receiver extracts the PN from the CCMP header. See 8.3.3.2 for a description
of how the PN is encoded in the CCMP header. The following processing rules are used to detect replay:

a) The PN values sequentially number each MPDU.

b) Each transmitter shall maintain a single PN (48-bit counter) for each PTKSA, GTKSA, and
STAKeySA.

c¢) The PN shall be implemented as a 48-bit monotonically incrementing non-negative integer, initial-
ized to 1 when the corresponding temporal key is initialized or refreshed.

d) A receiver shall maintain a separate set of PN replay counters for each PTKSA, GTKSA, and
STAKeySA. The receiver initializes these replay counters to 0 when it resets the temporal key for a
peer. The replay counter is set to the PN value of accepted CCMP MPDUs.

e) For each PTKSA, GTKSA, and STAKeySA, the recipient shall maintain a separate replay counter
for each IEEE 802.11 MSDU priority and shall use the PN recovered from a received frame to detect
replayed frames, subject to the limitation of the number of supported replay counters indicated in the
RSN Capabilities field (see 7.3.2.25). A replayed frame occurs when the PN extracted from a
received frame is less that or equal to the current replay counter value for the frame’s MSDU prior-
ity. A transmitter shall not use IEEE 802.11 MSDU priorities without ensuring that the receiver sup-
ports the required number of replay counters. The transmitter shall not reorder frames within a
replay counter, but may reorder frames across replay counters. One possible reason for reordering
frames is the IEEE 802.11 MSDU priority.

f) The receiver shall discard MSDUs whose constituent MPDU PN values are not sequential. A
receiver shall discard any MPDU that is received with its PN less than or equal to the replay counter
and shall increment the value of dot11RSNAStatsCCMPReplays for this key.

8.4 RSNA security association management
8.4.1 Security associations
8.4.1.1 Security association definitions

IEEE 802.11 uses the notion of a security association to describe secure operation. Secure communications
are possible only within the context of a security association, as this is the context providing the state—cryp-
tographic keys, counters, sequence spaces, etc.—needed for correct operation of the IEEE 802.11 cipher
suites.

A security association is a set of policy(ies) and key(s) used to protect information. The information in the
security association is stored by each party of the security association, must be consistent among all parties,
and must have an identity. The identity is a compact name of the key and other bits of security association
information to fit into a table index or an MPDU. There are four types of security associations supported by
an RSN STA:

— PMKSA: A result of a successful IEEE 802.1X exchange, preshared PMK information, or PMK
cached via some other mechanism.

— PTKSA: A result of a successful 4-Way Handshake.
— GTKSA: A result of a successful Group Key Handshake or successful 4-Way Handshake.

62 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

— STAKeySA: A result of a successful STAKey Handshake.
8.4.1.1.1 PMKSA

When the PMKSA is the result of a successful IEEE 802.1X authentication, it is derived from the EAP
authentication and authorization parameters provided by the AS. This security association is bidirectional. In
other words, both parties use the information in the security association for both sending and receiving. The
PMKSA is created by the Supplicant’s SME when the EAP authentication completes successfully or the
PSK is configured. The PMKSA is created by the Authenticator’s SME when the PMK is created from the
keying information transferred from the AS or the PSK is configured. The PMKSA is used to create the
PTKSA. PMKSAs are cached for up to their lifetimes. The PMKSA consists of the following elements:

— PMKID, as defined in 8.5.1.2. The PMKID identifies the security association.
— Authenticator MAC address.

— PMK.

— Lifetime, as defined in 8.5.1.2.

— AKMP.

— All authorization parameters specified by the AS or local configuration. This can include parameters
such as the STA’s authorized SSID.

8.4.1.1.2 PTKSA

The PTKSA is a result of the 4-Way Handshake. This security association is also bidirectional. The PTKSA
is used to create the key hierarchy. PTKSAs are cached for the life of the PMKSA. Because the PTKSA is
tied to the PMKSA, it only has the additional information from the 4-Way Handshake. There shall be only
one PTKSA with the same Supplicant and Authenticator MAC addresses. There is state created between
Message 1 and Message 3 of a 4-Way Handshake. This does not create a PTKSA until Message 3 is
validated on the Supplicant and Message 4 is validated by the Authenticator. The PTKSA consists of the fol-
lowing elements:

— PTK

— Pairwise cipher suite selector

— Supplicant MAC address

— Authenticator MAC address
8.4.1.1.3 GTKSA

The GTKSA results from a successful 4-Way Handshake or the Group Key Handshake and is unidirectional.
In an ESS, there is one GTKSA, used exclusively for encrypting broadcast/multicast MPDUs that are trans-
mitted by the AP and for decrypting broadcast/multicast transmissions that are received by the STAs. In an
IBSS, each STA defines its own GTKSA, which is used to encrypt its broadcast/multicast transmissions, and
stores a separate GTKSA for each peer STA so that encrypted broadcast/multicast traffic received from
other STAs may be decrypted. A GTKSA is created by the Supplicant’s SME when Message 3 of the 4-Way
Handshake is received or when Message 1 of the Group Key Handshake is received. The GTKSA is created
by the Authenticator’s SME when the SME changes the GTK and has sent the GTK to all STAs with which
it has a PTKSA. A GTKSA consists of the following elements:

— Direction vector (whether the GTK is used for transmit or receive).
— Group cipher suite selector.

— GTK.

— Authenticator MAC address.

— All authorization parameters specified by local configuration. This can include parameters such as
the STA’s authorized SSID.

Copyright © 2004 IEEE. Al rights reserved. 63

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

When the GTK is used to encrypt unicast traffic (the selectable cipher suite is “Use group key”), the GTKSA
is bidirectional.

8.4.1.1.4 STAKeySA

The STAKeySA is a result of the STAKey Handshake. This security association is unidirectional from the
initiator to the peer. There shall be only one STAKeySA with the same initiator and peer MAC addresses.
Creation of a new STAKeySA with the same initiator and peer MAC addresses will cause deletion of the
existing STAKeySA. The STAKeySA is created when Message 1 of the STAKey Handshake is validated.
The STAKeySA consists of the following elements:

STAKey

Pairwise cipher suite selector
Initiator MAC address

Peer MAC address

8.4.1.2 Security association life cycle

A STA can operate in either an ESS or in an IBSS, and a security association has a distinct life cycle for

each.

8.4.1.2.1 Security association in an ESS

In an ESS there are two cases:

Initial contact between the STA and the ESS
Roaming by the STA within the ESS

A STA and AP establish an initial security association via the following steps:

64

a)

b)

¢)

The STA selects an authorized ESS by selecting among APs that advertise an appropriate SSID.

The STA then uses IEEE 802.11 Open System authentication followed by association to the chosen
AP. Negotiation of security parameters takes place during association.

NOTES

1—It is possible for more than one PMKSA to exist. As an example, a second PMKSA may come into exist-
ence through PMKSA caching. A STA might leave the ESS and flush its cache. Before its PMKSA expires in
the AP’s cache, the STA returns to the ESS and establishes a second PMKSA from the AP’s perspective.

2—An attack altering the security parameters will be detected by the key derivation procedure.

3—IEEE 802.11 Open System authentication provides no security, but is included to maintain backward com-
patibility with the IEEE 802.11 state machine (see 5.5).

The AP’s Authenticator or the STA’s Supplicant initiates IEEE 802.1X authentication. The EAP
method used by IEEE 802.1X will support mutual authentication, as the STA needs assurance that
the AP is a legitimate AP.

NOTES

1—Prior to the completion of IEEE 802.1X authentication and the installation of keys, the IEEE 802.1X Con-
trolled Port in the AP will block all data frames. The IEEE 802.1X Controlled Port returns to the unauthorized
state and blocks all data frames before invocation of an MLME-DELETEKEY S.request primitive. The IEEE
802.1X Uncontrolled Port allows IEEE 802.1X frames to pass between the Supplicant and Authenticator.
Although IEEE 802.1X does not require a Supplicant Controlled Port, this amendment assumes that the Suppli-
cant has a Controlled Port in order to provide the needed level of security. Supplicants without a Controlled
Port compromise RSN security and should not be used.

2—Any secure network cannot support promiscuous association, e.g., an unsecured operation of IEEE 802.11.
A trust relationship must exist between the STA and the AS of the targeted SSID prior to association and secure
operation, in order for the association to be trustworthy. The reason is that an attacker can deploy a rogue AP

Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

just as easily as a legitimate network provider can deploy a legitimate AP, so some sort of prior relationship is
necessary to establish credentials between the ESS and the STA.

d) The last step is key management. The authentication process creates cryptographic keys shared
between the IEEE 802.1X AS and the STA. The AS transfers these keys to the AP, and the AP and
STA use one key confirmation handshake, called the 4-Way Handshake, to complete security asso-
ciation establishment. The key confirmation handshake indicates when the link has been secured by
the keys and is ready to allow normal data traffic.

A STA roaming within an ESS establishes a new PMKSA by one of three schemes:

— In the case of (re)association followed by IEEE 802.1X or PSK authentication, the STA repeats the
same actions as for an initial contact association, but its Supplicant also deletes the PTKSA when it
roams from the old AP. The STA’s Supplicant also deletes the PTKSA when it disassociates/deau-
thenticates from all basic service set identifiers (BSSIDs) in the ESS.

— A STA (AP) can retain PMKs for APs (STAs) in the ESS to which it has previously performed a full
IEEE 802.1X authentication. If a STA wishes to roam to an AP for which it has cached one or more
PMKSA:s, it can include one or more PMKIDs in the RSN information element of its (Re)Associa-
tion Request frame. An AP whose Authenticator has retained the PMK for one or more of the
PMKIDs can skip the 802.1X authentication and proceed with the 4-Way Handshake. The AP shall
include the PMKID of the selected PMK in Message 1 of the 4-Way Handshake. If none of the
PMKIDs of the cached PMKSAs matches any of the supplied PMKIDs, then the Authenticator shall
perform another IEEE 802.1X authentication. Similarly, if the STA fails to send a PMKID, the STA
and AP must perform a full IEEE 802.1X authentication.

— A STA already associated with the ESS can request its IEEE 802.1X Supplicant to authenticate with
a new AP before associating to that new AP. The normal operation of the DS via the old AP pro-
vides the communication between the STA and the new AP. The STA’s IEEE 802.11 management
entity delays reassociation with the new AP until IEEE 802.1X authentication completes via the DS.
If IEEE 802.1X authentication completes successfully, then PMKSAs shared between the new AP
and the STA will be cached, thereby enabling the possible usage of reassociation without requiring a
subsequent full IEEE 802.1X authentication procedure.

The MLME-DELETEKEY S.request primitive destroys the temporal keys established for the security asso-
ciation so that they cannot be used to protect subsequent IEEE 802.11 traffic. A STA’s SME uses this prim-
itive when it deletes a PTKSA or GTKSA.

8.4.1.2.2 Security association in an IBSS

In an IBSS, when a STA’s SME establishes a security association with a peer STA, it creates both an IEEE
802.1X Supplicant and Authenticator for the peer.

A STA can receive IEEE 802.1X messages from a previously unknown MAC address.

Any STA within an IBSS may decline to form a security association with a STA joining the IBSS. An
attempt to form a security association may also fail because, for example, the peer uses a different PSK from
what the STA expects.

In an IBSS each STA defines its own group key, i.e., GTK, to secure its broadcast/multicast transmissions.
Each STA shall use either the 4-Way Handshake or the Group Key Handshake to distribute its transmit GTK
to its new peer STA. When the STA generates a new GTK, it also uses the Group Key Handshake to distrib-
ute the new GTK to each established peer.

Copyright © 2004 IEEE. Al rights reserved. 65

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

8.4.2 RSNA selection

A STA prepared to establish RSNAs shall advertise its capabilities by including the RSN information ele-
ment in Beacon and Probe Response messages. The included RSN information element shall specify all the
authentication and cipher suites enabled by the STA’s policy. A STA shall not advertise any authentication
or cipher suite that is not enabled.

The STA’s IEEE 802.11 management entity shall utilize the MLME-SCAN.request primitive to identify
neighboring STAs that assert robust security and advertise an SSID identifying an authorized ESS or IBSS.
A STA may decline to communicate with STAs that fail to advertise an RSN information element in their
Beacon and Probe Response frames or that do not advertise an authorized SSID. A STA may also decline to
communicate with other STAs that do not advertise authorized authentication and cipher suites within their
RSN information elements.

A STA shall advertise the same RSN information element in both its Beacon and Probe Response frames.
NOTES

1—Whether a STA with robust security enabled may attempt to communicate with a STA that does not include the RSN
information element is a matter of policy.

2—As a practical matter, if maximal interoperability is a goal, an AP will support TKIP as well as CCMP.

A STA shall observe the following rules when processing an RSN information element:
— A STA shall advertise the highest version it supports.

— A STA shall request the highest Version field value it supports that is less than or equal to the ver-
sion advertised by the peer STA.

— Two peer STAs without overlapping supported Version field values shall not use RSNA methods to
secure their communication.

— A STA shall ignore suite selectors that it does not recognize.
8.4.3 RSNA policy selection in an ESS

RSNA policy selection in an ESS utilizes the normal IEEE 802.11 association procedure. RSNA policy
selection is performed by the associating STA. The STA does this by including an RSN information element
in its (Re)Association Requests.

In an RSN, an AP shall not associate with pre-RSNA STAs, i.e., with STAs that fail to include the RSN
information element in the Association or Reassociation Request frame.

The STA’s SME initiating an association shall insert an RSN information element into its (Re)Association
Request; via the MLME-ASSOCIATE.request primitive, when the targeted AP indicates RSNA support.
The initiating STA’s RSN information element shall include one authentication and pairwise cipher suite
from among those advertised by the targeted AP in its Beacon and Probe Response frames. It shall also
specify the group cipher suite specified by the targeted AP. If at least one RSN information element field
from the AP’s RSN information element fails to overlap with any value the STA supports, the STA shall
decline to associate with that AP.

If an RSNA-capable AP receives a (Re)Association Request including an RSN information element and if it
chooses to accept the association as a secure association, then it shall use the authentication and pairwise
cipher suites in the (Re)Association Request, unless the AP includes an optional second RSN information
element in Message 3 of the 4-Way Handshake. If the second RSN information element is supplied in Mes-
sage 3, then the pairwise cipher suite used by the security association, if established, shall be the pairwise
cipher from the second RSN information element.

66 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

In order to accommodate local security policy, a STA may choose not to associate with an AP that does not
support any pairwise cipher suites. An AP indicates that it does not support any pairwise keys by advertising
“Use group key” as the pairwise cipher suite selector.

NOTE—When an ESS uses PSKs, STAs negotiate a pairwise cipher. However, any STA in the ESS can derive the pair-
wise keys of any other that uses the same PSK by capturing the first two messages of the 4-Way Handshake. This pro-
vides malicious insiders with the ability to eavesdrop as well as the ability to establish a man-in-the-middle attack.

8.4.3.1 TSN policy selection in an ESS
In a TSN, an RSN STA shall include the RSN information element in its (Re)Association Requests.

An RSNA-capable AP configured to operate in a TSN shall include the RSN information element and may
associate with both RSNA and pre-RSNA STAs. In other words, an RSNA-capable AP shall respond to an
associating STA that includes the RSN information element just as in an RSN.

If an AP operating within a TSN receives a (Re)Association Request without an RSN information element,
its IEEE 802.1X Controlled Port shall initially be blocked. The SME shall unblock the IEEE 802.1X Con-
trolled Port when WEP has been enabled.

8.4.4 RSNA policy selection in an IBSS

In an IBSS, all STAs must use a single group cipher suite, and all STAs must support a common subset of
pairwise cipher suites. However, the SMEs of any pair of STAs may negotiate to use any common pairwise
cipher suite they both support. Each STA shall include the group cipher suite and its list of pairwise cipher
suites in its Beacon and Probe Response messages. Two STAs may only establish a PMKSA if they have
advertised the same group cipher suite. Similarly, the two STAs shall not establish a PMKSA if the STAs
have advertised disjoint sets of pairwise cipher suites.

When an IBSS STA’s SME wants to set up a security association with a peer STA, but does not know the
peer’s policy, it must first obtain the peer’s security policy using a Probe Request frame. The SME entities
of the two STAs select the pairwise cipher suites using one of the 4-Way Handshakes. The SMEs of each
pair of STAs within an IBSS may use the EAPOL-Key 4-Way Handshake to select a pairwise cipher suite.
As specified in 8.5.2, Message 2 and Message 3 of the 4-Way Handshake convey an RSN information ele-
ment. The Message 2 RSN information element includes the selected pairwise cipher suite, and Message 3
includes the RSN information element that the STA would send in a Probe Response frame.

The pair of STAs shall use the pairwise cipher suite specified in Message 3 of the 4-Way Handshake sent by
the Authenticator STA with the higher MAC address (see 8.5.1).

The SME shall check that the group cipher suite and AKMP match those in the Beacon and Probe Response
frames for the IBSS.

NOTES

1—The RSN information elements in Message 2 and Message 3 are not the same as in the Beacon frame. The group
cipher and AKMP are the same, but the pairwise ciphers may differ because Beacon frames from different STAs may
advertise different pairwise ciphers. Thus, STAs in an IBSS use the same AKM suite and group cipher, while different
pairwise ciphers can be used between STA pairs.

2—When an IBSS network uses PSKs, STAs can negotiate a pairwise cipher. However, any STA in the IBSS can derive

the PTKs of any other that uses the same PSK by capturing the first two messages of the 4-Way Handshake. This pro-
vides malicious insiders with the ability to eavesdrop as well as the ability to establish a man-in-the-middle attack.

Copyright © 2004 IEEE. Al rights reserved. 67

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

8.4.4.1 TSN policy selection in an IBSS

Pre-RSNA STAs generate Beacon and Probe Response frames without an RSN information element and
will ignore the RSN information element because it is unknown to them. This allows an RSNA STA to iden-
tify the pre-RSNA STAs from which it has received Beacon and Probe Response frames.

If an RSNA STA’s SME instead identifies a possible IBSS member on the basis of a received broadcast/
multicast message, via MLME-PROTECTEDFRAMEDROPPED.indication primitive, it cannot identify the
peer’s security policy directly. The SME can attempt to obtain the peer STA’s security policy via a Probe
Request frame.

8.4.5 RSN management of the IEEE 802.1X Controlled Port

When the policy selection process chooses IEEE 802.1X authentication, this amendment assumes that IEEE
802.1X Supplicants and Authenticators exchange protocol information via the IEEE 802.1X Uncontrolled
port. The IEEE 802.1X Controlled Port is blocked from passing general data traffic between the STAs until
an [EEE 802.1X authentication procedure completes successfully over the IEEE 802.1X Uncontrolled Port.
The security of an RSNA depends on this assumption being true.

In an ESS, the STA indicates the IEEE 802.11 link is available by invoking the MLME-ASSOCIATE.con-
firm or MLME-REASSOCIATE.confirm primitive. This signals the Supplicant that the MAC has transi-
tioned from the disabled to enabled state. At this point, the Supplicant’s Controlled Port is blocked, and
communication of all non-IEEE 802.1X MSDU s sent or received via the port is not authorized.

In an ESS, the AP indicates that the IEEE 802.11 link is available by invoking the MLME-ASSOCI-
ATE.indication or MLME-REASSOCIATE.indication primitive. At this point the Authenticator’s Con-
trolled Port corresponding to the STA’s association is blocked, and communication of all non-IEEE 802.1X
MSDUs sent or received via the Controlled Port is not authorized.

In an IBSS, the STA shall block all IEEE 802.1X ports at initialization. Communication of all non-IEEE
802.1X MSDUs sent or received via the Controlled Port is not authorized.

This amendment assumes each Controlled Port remains blocked until the IEEE 802.1X state variables
portValid and keyDone both become true. This assumption means that the IEEE 802.1X Controlled Port dis-
cards MSDUs sent across the IEEE 802.11 channel prior to the installation of cryptographic keys into the
MAC. This protects the STA’s host from forged MSDUs written to the channel while it is still being
initialized.

The MAC does not distinguish between MSDUs for the Controlled Port, and MSDUs for the Uncontrolled
Port. In other words, IEEE 802.1X EAPOL frames will only be encrypted after invocation of the MLME-
SETPROTECTION.request primitive.

This amendment assumes that IEEE 802.1X does not block the Controlled Port when authentication is trig-
gered through reauthentication. During IEEE 802.1X reauthentication, an existing RSNA can protect all
MSDUs exchanged between the STAs. Blocking MSDUs is not required during reauthentication over an
RSNA.

8.4.6 RSNA authentication in an ESS

When establishing an RSNA, a STA shall use IEEE 802.11 Open System authentication prior to
(re)association.

IEEE 802.1X authentication is initiated by any one of the following mechanisms:

68 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

— If a STA negotiates to use IEEE 802.1X authentication during (re)association, the STA’s manage-
ment entity can respond to the MLME-ASSOCIATE.confirm (or indication) primitive by requesting
the STA’s Supplicant (or AP’s Authenticator) to initiate IEEE 802.1X authentication. Thus, in this
case, authentication is driven by the STA’s decision to associate and the AP’s decision to accept the
association.

— If a STA’s MLME-SCAN.confirm primitive finds another AP within the current ESS, a STA may
signal its Supplicant to use IEEE 802.1X to preauthenticate with that AP.

NOTE—A roaming STA’s IEEE 802.1X Supplicant may initiate preauthentication by sending an EAPOL-Start
message via its old AP, through the DS, to a new AP.

— Ifa STA receives an IEEE 802.1X message, it delivers this to its Supplicant or Authenticator, which
may initiate a new IEEE 802.1X authentication.

8.4.6.1 Preauthentication and RSNA key management

A STA shall not use preauthentication except when pairwise keys are employed. Preauthentication shall not
be used unless the new AP advertises the preauthentication capability in the RSN information element.

When preauthentication is used, then
a) Authentication is independent of roaming.

b) The STA’s Supplicant may authenticate with multiple APs at a time.

NOTE—Preauthentication can be useful as a performance enhancement, as reassociation will not include the protocol
overhead of a full reauthentication when it is used.

Preauthentication uses the IEEE 802.1X protocol and state machines with EtherType 88-C7, rather than the
EtherType 88-8E. Only IEEE 802.1X frame types EAP-Packet and EAPOL-Start are valid for
preauthentication.

NOTE—Some IEEE 802.1X Authenticators may not bridge IEEE 802.1X frames, as suggested in C.1.1 of IEEE
P802.1X-REV. Preauthentication uses a distinct EtherType to enable such devices to bridge preauthentication frames.

A STA’s Supplicant can initiate preauthentication when it has completed the 4-Way Handshake and config-
ured the required temporal keys. To effect preauthentication, the STA’s Supplicant sends an IEEE 802.1X
EAPOL-Start message with the DA being the BSSID of a targeted AP and the RA being the BSSID of the
AP with which it is associated. The target AP shall use a BSSID equal to the MAC address of its Authentica-
tor. As preauthentication frames do not use the IEEE 802.1X EAPOL EtherType field, the AP with which
the STA is currently associated need not apply any special handling. The AP and the MAC in the STA shall
handle these frames in the same way as other frames with arbitrary EtherType field values that require distri-
bution via the DS.

An AP’s Authenticator that receives an EAPOL-Start message via the DS may initiate IEEE 802.1X authen-
tication to the STA via the DS. The DS will forward this message to the AP with which the STA is
associated.

The result of preauthentication may be a PMKSA, if the IEEE 802.1X authentication completes success-
fully. If preauthentication produces a PMKSA, then, when the Supplicant's STA associates with the preau-
thenticated AP, the Supplicant can use the PMKSA with the 4-Way Handshake.

Successful completion of EAP authentication over IEEE 802.1X establishes a PMKSA at the Supplicant.
The Authenticator has the PMKSA when the AS completes the authentication, passes the keying informa-
tion (the authentication, authorization, and accounting [AAA] key, a portion of which is the PMK) to the
Authenticator, and the Authenticator creates a PMKSA using the PMK. The PMKSA is inserted into the
PMKSA cache. Therefore, if the Supplicant and Authenticator lose synchronization with respect to the

Copyright © 2004 IEEE. Al rights reserved. 69

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

PMKSA, the 4-Way Handshake will fail. In such circumstances, the MIB variable dot 11RSNAStats-
4WayHandshakeFailures shall be incremented.

A STA’s Supplicant may initiate preauthentication with any AP within its present ESS with preauthentica-
tion enabled regardless of whether the targeted AP is within radio range.

Even if a STA has preauthenticated, it is still possible that it may have to undergo a full IEEE 802.1X
authentication, as the AP’s Authenticator may have purged its PMKSA due to, for example, unavailability
of resources, delay in the STA associating, etc.

8.4.6.2 Cached PMKSAs and RSNA key management

A STA can retain PMKSASs it establishes as a result of previous authentication. The PMKSA cannot be
changed while cached. The PMK in the PMKSA is used with the 4-Way Handshake to establish fresh PTKs.

If a non-AP STA in an ESS has determined it has a valid PMKSA with an AP to which it is about to
(re)associate, it includes the PMKID for the PMKSA in the RSN information element in the (Re)Association
Request. Upon receipt of a (Re)Association Request with one or more PMKIDs, an AP checks whether its
Authenticator has retained a PMK for the PMKIDs and whether the PMK is still valid. If so, it asserts pos-
session of that PMK by beginning the 4-Way Handshake after association has completed; otherwise it
begins a full IEEE 802.1X authentication after association has completed.

If both sides assert possession of a cached PMKSA, but the 4-Way Handshake fails, both sides may delete
the cached PMKSA for the selected PMKID.

If a STA roams to an AP with which it is preauthenticating and the STA does not have a PMKSA for that
AP, the STA must initiate a full IEEE 802.1X EAP authentication.

8.4.7 RSNA authentication in an IBSS

When authentication is used in an IBSS, it is driven by each STA wishing to establish communications. The
management entity of this STA chooses a set of STAs with which it may want to authenticate and then may
cause the MAC to send an IEEE 802.11 Open System authentication message to each targeted STA. Candi-
date STAs can be identified from Beacon frames, Probe Response frames, and data frames from the same
BSSID. Before communicating with STAs identified from data frames, the security policy of the STAs may
be obtained, e.g., by sending a Probe Request frame to the STA and obtaining a Probe Response frame. Tar-
geted STAs that wish to respond may return an IEEE 802.11 Open System authentication message to the ini-
tiating STA.

When IEEE 802.1X authentication is used, the STA management entity will then request its local IEEE
802.1X entity to create a Supplicant PAE for the peer STA. The Supplicant PAE will initiate the authentica-
tion to the peer STA by sending an EAPOL-Start message to the peer. The STA management entity will also
request its local IEEE 802.1X entity to create an Authenticator PAE for the peer STA on receipt of the
EAPOL-Start message. The Authenticator will initiate authentication to the peer STA by sending an EAP-
Request message or, if PSK mode is in effect, Message 1 of the 4-Way Handshake.

Upon initial authentication between any pair of STAs, data frames, other than IEEE 802.1X messages, are
not allowed to flow between the pair of STAs until both STAs in each pair of STAs have successfully com-
pleted AKM and have provided the supplied encryption keys.

Upon the initiation of an IEEE 802.1X reauthentication by any STA of a pair of STAs, data frames will con-
tinue to flow between the STAs while authentication completes. Upon a timeout or failure in the authentica-
tion process, the Authenticator of the STA initiating the reauthentication shall cause a Deauthentication
message to be sent to the Supplicant of the STA targeted for reauthentication. The Deauthentication message

70 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

will cause both STAs in the pair of STAs to follow the deauthentication procedure defined in 11.3.3 and
11.3.4.

The IEEE 802.1X reauthentication timers in each STA are independent. If the reauthentication timer of the
STA with the higher MAC address (see 8.5.1 for MAC comparison) triggers the reauthentication via its
Authenticator, its Supplicant must send an EAPOL-Start message to the authenticator of the STA with the
lower MAC address to trigger reauthentication on the other STA. This process keeps the pair of STAs in a
consistent state with respect to derivation of fresh temporal keys upon an IEEE 802.1X reauthentication.

When it receives an MLME-AUTHENTICATE.indicate primitive due to an Open System authentication
request, the [EEE 802.11 management entity on a targeted STA shall, if it wants to set up a security associa-
tion with the peer STA, request its Authenticator to begin IEEE 802.1X authentication, i.e., to send an EAP-
Request/Identity message or Message 1 of the 4-Way Handshake to the Supplicant.

The EAPOL-Key frame is used to exchange information between the Supplicant and the Authenticator to
negotiate a fresh PTK. The 4-Way Handshake produces a single PTK from the PMK. The 4-Way Handshake
and Group Key Handshake use the PTK to protect the GTK as it is transferred to the receiving STA.

PSK authentication may also be used in an IBSS. When a single PSK is shared among the IBSS STAs, the
STA wishing to establish communication sends 4-Way Handshake Message 1 to the target STA(s). The tar-
geted STA responds to Message 1 with Message 2 of the 4-Way Handshake and begins its 4-Way Hand-
shake by sending Message 1 to the initiating STA. The two 4-Way Handshakes establish PTKSAs and
GTKSAs to be used between the initiating STA and the targeted STA. PSK PMKIDs may also be used,
enabling support for pairwise PSKs.

The model for security in an IBSS is not general. In particular, it assumes the following:

a) The sets of use cases for which the authentication procedures described in this subclause are valid
are as follows:

1) PSK-based authentication, typically managed by the pass-phrase hash method as described in
H.4

2) EAP-based authentication, using credentials that have been issued and preinstalled on the STAs
within a common administrative domain, such as a single organization

b) All of the STAs are in direct radio communication. In particular, there is no routing, bridging, or for-
warding of traffic by a third STA to effect communication. This assumption is made, because the
model makes no provision to protect IBSS topology information from tampering by one of the
members.

8.4.8 RSNA key management in an ESS

When the IEEE 802.1X authentication completes successfully, this amendment assumes that the STA’s
IEEE 802.1X Supplicant and the IEEE 802.1X AS will share a secret, called a PMK. The AS transfers the
PMK, within the AAA key, to the AP, using a technique that is outside the scope of this amendment; the der-
ivation of the PMK from the MSK is EAP-method-specific. With the PMK in place, the AP initiates a key
confirmation handshake with the STA. The key confirmation handshake sets the IEEE 802.1X state variable
portValid (as described in IEEE P802.1X-REV) to TRUE.

The key confirmation handshake is implemented by the 4-Way Handshake. The purposes of the 4-Way
Handshake are as follows:

a) Confirm the existence of the PMK at the peer.

b) Ensure that the security association keys are fresh.

¢) Synchronize the installation of temporal keys into the MAC.
d) Transfer the GTK from the Authenticator to the Supplicant.

Copyright © 2004 IEEE. Al rights reserved. 71

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

e) Confirm the selection of cipher suites.
NOTES

1—Message 1 of the 4-Way Handshake can be forged. However, the forgery attempt will be detected in the
failure of the 4-Way Handshake.

2—Neither the AP nor the STA can use the PMK for any purpose but the one specified herein without compro-
mising the key. If the AP uses it for another purpose, then the STA can masquerade as the AP; similarly if the
STA reuses the PMK in another context, then the AP can masquerade as the STA.

The Supplicant and Authenticator signal the completion of key management by utilizing the MLME-SET-
KEYS.request primitive to configure the agreed-upon temporal pairwise key into the IEEE 802.11 MAC and
by calling the MLME-SETPROTECTION.request primitive to enable its use.

A second key exchange, the Group Key Handshake, is also defined. It distributes a subsequent GTK. The
AP’s Authenticator can use the Group Key Handshake to update the GTK at the STA’s Supplicant. The
Group Key Handshake uses the EAPOL-Key frames for this exchange. When it completes, the STA’s Sup-
plicant can use the MLME-SETKEY S.request primitive to configure the GTK into the IEEE 802.11 MAC.

8.4.9 RSNA key management in an IBSS

To establish a security association between two STAs in an IBSS, each STA’s SME must have an accompa-
nying IEEE 802.1X Authenticator and Supplicant. Each STA’s SME initiates the 4-Way Handshake from
the Authenticator to the peer STA’s Supplicant (see 8.4.7). Two separate 4-Way Handshakes are conducted.

The 4-Way Handshake is used to negotiate the pairwise cipher suites, as described in 8.4.4. The IEEE
802.11 SME configures the temporal key portion of the PTK into the IEEE 802.11 MAC. Each Authentica-
tor uses the KCK and KEK portions of the PTK negotiated by the exchange it initiates to distribute its own
GTK. Each Authenticator generates its own GTK and uses either the 4-Way Handshake or the Group Key
Handshake to transfer the GTK to other STAs with whom it has completed a 4-Way Handshake. The pair-
wise key used between any two STAs shall be the pairwise key from the 4-Way Handshake initiated by the
STA with the highest MAC address.

A STA joining an IBSS is required to adopt the security configuration of the IBSS, which includes the group
cipher suite, pairwise cipher suite, and AKMP (see 8.4.4). The STA shall not set up a security association
with any STA having a different security configuration. The Beacon and Probe Response frames of the vari-
ous STAs within an IBSS must reflect a consistent security policy, as the beacon initiation rotates among the
STAs.

A STA joining an IBSS shall support and advertise in the Beacon frame the security configuration of the
IBSS, which includes the group cipher suite, advertised pairwise cipher suite, and AKMP (see 8.4.4). The
STA may use the Probe Request frame to discover the security policy of a STA, including additional unicast
cipher suites the STA supports. A STA shall ignore Beacon frames that advertise a different security policy.

8.4.10 RSNA security association termination

When an SME receives or invokes of any of the MLME association, reassociation, disassociation, authenti-
cation, or deauthentication request or indication primitives, or if it believes that it has drifted out of radio
range of another STA, it will delete some security associations. In the case of an ESS, the non-AP STA’s
SME shall delete the PTKSA and the GTKSA, and the AP’s SME shall delete the PTKSA. In the case of an
IBSS, the STA’s SME shall delete the PTKSA and the receive GTKSA. Once the security associations have
been deleted, the SME then invokes MLME-DELETEKEY S.request primitive to delete all temporal keys
associated with the deleted security associations. The IEEE 802.1X Controlled Port returns to being
blocked. As a result, all data frames are unauthorized before invocation of an MLME-
DELETEKEYS.request primitive.

72 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

If a STA loses key state synchronization, it can apply the following rules to recover:

a) Any protected frame(s) received shall be discarded, and MLME-PROTECTEDFRAMED-
ROPPED.indication primitive is invoked.

b) Ifthe STA is RSNA-enabled and has joined an IBSS, the SME shall execute the authentication pro-
cedure as described in 11.3.1.

c) If the STA is RSNA-enabled and has joined an ESS, the SME shall execute the deauthentication
procedures as described in 11.3.3. However, if the STA has initiated the RSN security association,
but has not yet invoked the MLME-SETPROTECTION.request primitive, then no additional action
is required.

NOTES

1—There is a race condition between when MLME-SETPROTECTION.request primitive is invoked on the
Supplicant and when it is invoked on the Authenticator. During this time, an encrypted MPDU may be received
that cannot be decrypted; and the MPDU will be discarded without a deauthentication occurring.

2—Because the IEEE 802.11 null data MPDU does not derive from an MA-UNITDATA. request, it is not
protected.

If the selected AKMP fails between a STA and an AP that are associated, then both the STA and the AP
shall invoke the MAC deauthentication procedure described in 11.3.3.

8.5 Keys and key distribution
8.5.1 Key hierarchy

RSNA defines two key hierarchies:
a) Pairwise key hierarchy, to protect unicast traffic

b) GTK, a hierarchy consisting of a single key to protect multicast and broadcast traffic

NOTE—Pairwise key support with TKIP or CCMP allows a receiving STA to detect MAC address spoofing
and data forgery. The RSNA architecture binds the transmit and receive addresses to the pairwise key. If an
attacker creates an MPDU with the spoofed TA, then the decapsulation procedure at the receiver will generate
an error. GTKs do not have this property.

The description of the key hierarchies uses the following two functions:

— L(Str,F,L) From St starting from the left, extract bits F' through F+L-1, using the IEEE
802.11 bit conventions from 7.1.1.

— PRF-n Pseudo-random function producing n bits of output, defined in 8.5.1.1.

In an ESS, the IEEE 802.1X Authenticator MAC address (AA) and the AP’s BSSID are the same, and the
Supplicant’s MAC address (SPA) and the STA’s MAC address are equal. For the purposes of comparison,
the MAC address is encoded as 6 octets, taken to represent an unsigned binary number. The first octet of the
MAC address shall be used as the most significant octet. The bit numbering conventions in 7.1.1 shall be
used within each octet.

An RSNA STA using CCMP shall support at least one pairwise key for any <TA,RA> pair. The <TA,RA>
identifies the pairwise key, which does not correspond to any WEP key identifer.

In a a mixed environment, an AP may simultaneously communicate with some STAs using WEP with
shared WEP keys and to STAs using CCMP or TKIP with pairwise keys. The STAs running WEP use
default keys 0-3 for shared WEP keys; the important point here is that WEP can still use WEP default key 0.
The AP can be configured to use the WEP key in WEP default key 0 for WEP; if the AP is configured in this
way, STAs that cannot support WEP default key 0 simultaneously with a TKIP pairwise key shall specify
the No Pairwise subfield in the RSN Capabilities field. If an AP is configured to use WEP default key 0 as a

Copyright © 2004 IEEE. Al rights reserved. 73

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

WEP key and a “No Pairwise” STA associates, the AP shall not set the Install bit in the 4-Way Handshake.
In other words, the STA will not install a pairwise temporal key and instead will use WEP default key O for
all traffic.

NOTE—The behavior of “No Pairwise” STAs is only intended to support the migration of WEP to RSNA.

TKIP STAs in a mixed environment are expected to support a single pairwise key either by using a key map-
ping key or by mapping to default key 0. The AP will use a pairwise key for unicast traffic between the AP
and the STA. If a key mapping key is available, the <RA,TA> pair identifies the key; if there is no key map-
ping key, then the default key 0 is used because the key index in the message will be 0.

A STA that cannot support TKIP keys and WEP default key 0 simultaneously advertises this deficiency by
setting the No Pairwise subfield in the RSN information element it sends in the (Re)Association Request to
the AP. In response, the AP will, in Message 3 of the 4-Way Handshake, clear the Install bit to notify the
STA not to install the pairwise key. The AP will instead send the WEP shared key to the station to be
plumbed as the WEP default key 0; this key will then be used with WEP to send and receive unicast traffic
between the AP and the STA.

The TKIP STA that has this limitation may not know that it will be forced to use WEP for all transmissions
until it has associated with the AP and been given the keys to use. (The STA cannot know that the AP has
been configured to use WEP default key 0 for WEP communication.) If this does not satisfy the security pol-
icy configured at the STA, the STA’s only recourse is to disassociate and try a different AP.

CCMP STAs in a TSN shall support pairwise keys and WEP default key 0 simultaneously. It is invalid for
the STA to negotiate the No Pairwise subfield when CCMP is one of the configured ciphers.

8.5.1.1 PRF

A PREF is used in a number of places in this amendment. Depending on its use, it may need to output 128
bits, 192 bits, 256 bits, 384 bits, or 512 bits. This subclause defines five functions:

— PRF-128, which outputs 128 bits
— PRF-192, which outputs 192 bits
— PRF-256, which outputs 256 bits
— PRF-384, which outputs 384 bits
— PRF-512, which outputs 512 bits

In the following, A4 is a unique label for each different purpose of the PRF; Y is a single octet containing 0; X
is a single octet containing the parameter; and || denotes concatenation:

H-SHA-1(X, 4, B, X) < HMAC-SHA-1(K, 4 || Y|| B|| X)

PRF(K, A4, B, Len)
fori < 0to (Lent+159)/160 do
R < R ||H-SHA-1(K, 4, B, i)
return L(R, 0, Len)

PRF-128(K, 4, B) = PRF(K, 4, B, 128)
PRF-192(K, 4, B) = PRF(K, 4, B, 192)
PRF-256(K, 4, B) = PRF(K, 4, B, 256)
PRF-384(K, 4, B) = PRF(K, A, B, 384)
PRF-512(K, 4, B) = PRF(K, 4, B, 512)

74 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

8.5.1.2 Pairwise key hierarchy

The pairwise key hierarchy utilizes PRF-384 or PRF-512 to derive session-specific keys from a PMK, as
depicted in Figure 43s. The PMK shall be 256 bits. The pairwise key hierarchy takes a PMK and generates a
PTK. The PTK is partitioned into KCK and KEK, and temporal keys used by the MAC to protect unicast
communication between the Authenticator’s and Supplicant’s respective STAs. PTKs are used between a
single Supplicant and a single Authenticator.

Pairwise Master Key (PMK)

PRF- X(PMK, “Pairwise key expansion”,
Min(AA,SPA) || Max(AA,SPA) ||
Min(ANonce,SNonce) ||
Max(ANonce,SNonce))

Pairwise Transient Key (PTK)

(X bits)
EAPOL-Key EAPOL-Key Temporal Key
Key Key Encryption TKIP: L(PTK,256,256)
Confirmation Key CCMP: L(PTK,256,128)
Key L(PTK,128,128) (TK)
L(PTK,0,128) (KEK)
(KCK)

Figure 43s—Pairwise key hierarchy

When not using a PSK, the PMK is derived from the AAA key. The PMK shall be computed as the first
256 bits (bits 0-255) of the AAA key: PMK <« L(PTK, 0, 256). When this derivation is used, the AAA key
must consist of at least 256 bits.

The PTK shall not be used longer than the PMK lifetime as determined by the minimum of the PMK lifetime
indicated by the AS, e.g., Session-Timeout + dot1xAuthTxPeriod or from the dot 11RSNAConfig-
PMKLifetime MIB variable. When RADIUS is used and the Session-Timeout attribute is not in the
RADIUS Accept message, and if the key lifetime is not otherwise specified, then the PMK lifetime is
infinite.

NOTES

1—If the protocol between the Authenticator (or AP) and AS is RADIUS, then the MS-MPPE-Recv-Key attribute
(vendor-id = 17; see Section 2.4.3 in IETF RFC 2548) may be used to transport the PMK to the AP.

2—When reauthenticating and changing the pairwise key, a race condition may occur. If a frame is received while
MLME-SETKEY S.request primitive is being processed, the received frame may be decrypted with one key and the MIC
checked with a different key. Two possible options to avoid this race condition are as follows: the frame can be checked
against the old MIC key, and the received frames may be queued while the keys are changed.

3—If the AKMP is RSNA-PSK, then a 256-bit PSK may be configured into the STA and AP or a pass-phrase may be
configured into the Supplicant or Authenticator. The method used to configure the PSK is outside this amendment, but
one method is via user interaction. If a pass-phrase is configured, then a 256-bit key is derived and used as the PSK. In
any RSNA-PSK method, the PSK is used directly as the PMK. Implementations may support different PSKs for each
pair of communicating STAs.

Copyright © 2004 IEEE. Al rights reserved. 75

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Here, the following assumptions apply:

— SNonce is a random or pseudo-random value contributed by the Supplicant; its value is taken when
a PTK is instantiated and is sent to the PTK Authenticator.

— ANonce is a random or pseudo-random value contributed by the Authenticator.
— The PTK shall be derived from the PMK by

PTK « PRF-X(PMK, “Pairwise key expansion”, Min(AA,SPA) || Max(AA,SPA) ||
Min(ANonce,SNonce) || Max(ANonce,SNonce))

TKIP uses X = 512 and CCMP uses X = 384. The Min and Max operations for IEEE 802 addresses
are with the address converted to a positive integer treating the first transmitted octet as the most sig-
nificant octet of the integer. The Min and Max operations for nonces are with the nonces treated as
positive integers converted as specified in 7.1.1.

NOTE—The Authenticator and Supplicant normally derive a PTK only once per association. A Supplicant or
an Authenticator may use the 4-Way Handshake to derive a new PTK. Both the Authenticator and Supplicant
create a new nonce value for each 4-Way Handshake instance.

— The KCK shall be computed as the first 128 bits (bits 0—-127) of the PTK:
KCK « L(PTK, 0, 128)

The KCK is used by IEEE 802.1X to provided data origin authenticity in the 4-Way Handshake and
Group Key Handshake messages.

— The KEK shall be computed as bits 128-255 of the PTK:
KEK « L(PTK, 128, 128)

The KEK is used by the EAPOL-Key frames to provide confidentiality in the 4-Way Handshake and
Group Key Handshake messages.

— The temporal key (TK) shall be computed as bits 256-383 (for CCMP) or bits 256-511 (for TKIP)
of the PTK:

TK « L(PTK, 256, 128) or
TK « L(PTK, 256, 256)

The EAPOL-Key state machines (see 8.5.6 and 8.5.7) use the MLME-SETKEY S.request primitive to con-
figure the temporal key into the STA. The STA uses the temporal key with the pairwise cipher suite; inter-
pretation of this value is cipher-suite-specific.

A PMK identifier is defined as
PMKID = HMAC-SHA1-128(PMK, "PMK Name" || AA || SPA)

Here, HMAC-SHA1-128 is the first 128 bits of the HMAC-SHAT of its argument list.
8.5.1.3 Group key hierarchy
The GTK shall be a random number.

Any group master key (GMK) may be reinitialized at a time interval configured into the AP to reduce the
exposure of data if the GMK is ever compromised.

NOTES

1—The Authenticator may update the GTK for a number of reasons:
a) The Authenticator may change the GTK on disassociation or deauthentication of a STA.
b) An event within the STA’s SME can trigger a Group Key Handshake.

2—The group key hierarchy may use PRF-128 (for CCMP) or PRF-256 (for TKIP) to derive a GTK. Figure 43t depicts
one possible relationship among the keys of the group key hierarchy. In this model, the group key hierarchy takes a
GMK and generates a GTK. The GTK is partitioned into temporal keys used by the MAC to protect broadcast/multicast

76 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

communication. GTKs are used between a single Authenticator and all Supplicants authenticated to that Authenticator.
The Authenticator may derive new GTKs when it wants to update the GTKSs.

Group Master
Key (GMK)

PRF-X(GMK, "Group key expansion”, A8 || GMonce)

Group Termporal Key (GTK)
(¥ bis)

Temporal Key
THIP:
L(GTK,0, 256)
COMP:
L(GTK,0, 128)

Figure 43t—Group key hierarchy (informative)

Here, the following assumptions apply:

— Group nonce (GNonce) shall be a random or pseudo-random value contributed by the IEEE 802.1X
Authenticator.

The GTK shall be derived from the GMK by
GTK « PRF-X(GMK, “Group key expansion” || AA || GNonce)

TKIP uses X = 256, CCMP uses X = 128 and WEP use X =40 or X = 104. AA is represented as an IEEE 802
address and GNonce as a bit string as defined in 7.1.1.

— The temporal key (TK) shall be bit 0-39, bits 0—103, bits 0-127, or bits 0-255 of the GTK:
TK « L(GTK, 0, 40) or
TK « L(GTK, 0, 104) or
TK « L(GTK, 0, 128) or
TK « L(GTK, 0, 256)

The EAPOL-Key state machines (see 8.5.6 and 8.5.7) configure the temporal key into IEEE 802.11 via the MLME-SET-
KEYS.request primitive, and IEEE 802.11 uses this key. Its interpretation is cipher-suite-specific.

8.5.2 EAPOL-Key frames

IEEE 802.11 uses EAPOL-Key frames to exchange information between STAs’ Supplicants and Authenti-
cators. These exchanges result in cryptographic keys and synchronization of security association state.
EAPOL-Key frames are used to implement three different exchanges:

— 4-Way Handshake, to confirm that the PMK between associated STAs is the same and live and to
transfer the GTK to the STA.

Group Key Handshake, to update the GTK at the STA.
— STAKey Handshake, to deliver the STAKey to the initiating and peer STAs.

The RSNA key descriptor used by IEEE 802.11 does not use the IEEE 802.1X key descriptor. Instead, it
uses the key descriptor described in this subclause.

Copyright © 2004 IEEE. Al rights reserved. 77

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

The bit and octet convention for fields in the EAPOL-Key frame are defined in 7.1 of IEEE P802.1X-REV.
EAPOL-Key frames containing invalid field values shall be silently discarded. Figure 43u depicts the format
of an EAPOL-Key frame.

Descriptor Type — 1 octet

Key Information — 2 Key Length — 2 octets
octets

Key Replay Counter — § octets

Key Mornce — 32 octets
EARPOL-Key IV — 16 octets
Key RSC -5 octets

Reserved - 8 octets
Key MIC — 16 octets

Key Data Length - 2 Key Data — n octets
octets

Figure 43u—EAPOL-Key frame

The fields of a EAPOL-Key frame are as follows:

a) Descriptor Type. This field is one octet and has a value defined by IEEE P802.1X-REV, identify-
ing the IEEE 802.11 key descriptor.

b) Key Information. This field is 2 octets and specifies characteristics of the key. See Figure 43v.

BO B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B15
Key Key Reserved Install Key Key Secure Error Request | Encrypted Reserved
Descriptor Type Ack MIC Key Data
Version

78

Figure 43v—Key Information bit layout

The bit convention used is as in 7.1 of IEEE P802.1X-REV. The subfields of the Key Information
field are as follows:

1) Key Descriptor Version (bits 0—2) specifies the key descriptor version type.

i) The value 1 shall be used for all EAPOL-Key frames to and from a STA when neither the
group nor pairwise ciphers are CCMP for Key Descriptor 1. This value indicates the
following:

— HMAC-MDS is the EAPOL-Key MIC.
— RC4 is the EAPOL-Key encryption algorithm used to protect the Key Data field.

ii) The value 2 shall be used for all EAPOL-Key frames to and from a STA when either the
pairwise or the group cipher is AES-CCMP for Key Descriptor 2. This value indicates the
following:

HMAC-SHA1-128 is the EAPOL-Key MIC. HMAC is defined in IETF RFC 2104;
and SHA1, by FIPS PUB 180-1. The output of the HMAC-SHAT shall be truncated
to its 128 MSBs (octets 0—15 of the digest output by HMAC-SHA1), i.e., the last
four octets generated shall be discarded.

Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

— The NIST AES key wrap is the EAPOL-Key encryption algorithm used to protect
the Key Data field. IETF RFC 3394 defines the NIST AES key wrap algorithm.

Key Type (bit 3) specifies whether this EAPOL-Key frame is part of a 4-Way Handshake
deriving a PTK.

i) The value 0 (Group/STAKey) indicates the message is not part of a PTK derivation.
i) The value 1 (Pairwise) indicates the message is part of a PTK derivation.

Reserved (bits 4-5). The sender shall set them to 0, and the receiver shall ignore the value of
these bits.

Install (bit 6).
i) If the value of Key Type (bit 3) is 1, then for the Install bit,

— The value 1 means the IEEE 802.1X component shall configure the temporal key
derived from this message into its IEEE 802.11 STA.

— The value 0 means the IEEE 802.1X component shall not configure the temporal key
into the IEEE 802.11 STA.

ii) If the value of Key Type (bit 3) is 0, then this bit shall be 0 on transmit and ignored on
receive.

Key Ack (bit 7) is set in messages from the Authenticator if an EAPOL-Key frame is required
in response to this message and is clear otherwise. The Supplicant’s response to this message
shall use the same replay counter as this message.

Key MIC (bit 8) is set if a MIC is in this EAPOL-Key frame and is clear if this message con-
tains no MIC.

Secure (bit 9) is set once the initial key exchange is complete.

The Authenticator shall set the Secure bit to 0 in all EAPOL-Key frames sent before the
Supplicant has the PTK and the GTK. The Authenticator shall set the Secure bit to 1 in all
EAPOL-Key frames it sends to the Supplicant containing the last key needed to complete the
Supplicant’s initialization.

The Supplicant shall set the Secure bit to 0 in all EAPOL-Key frames it sends before it has the
PTK and the GTK and before it has received an EAPOL-Key frame from the Authenticator
with the Secure bit set to 1 (this should be before receiving Message 3 of the 4-Way Hand-
shake). The Supplicant shall set the Secure bit to 1 in all EAPOL-Key Frames sent after this
until it loses the security association it shares with the Authenticator.

Error (bit 10) is set by a Supplicant to report that a MIC failure occurred in a TKIP MSDU. A
Supplicant shall set this bit only when the Request (bit 11) is set.

Request (bit 11) is set by a Supplicant to request that the Authenticator initiate either a 4-Way
Handshake or Group Key Handshake and is set by a Supplicant in a Michael MIC Failure
Report. The Supplicant shall not set this bit in on-going 4-Way Handshakes, i.e., the Key Ack
bit (bit 7) shall not be set in any message with the Request bit set. The Authenticator shall never
set this bit.

In a Michael MIC Failure Report, setting the bit is not a request to initiate a new handshake.
However the recipient may initiate a new handshake on receiving such a message.

If the EAPOL-Key frame with Request bit set has a key type of Pairwise, the Authenticator
shall initiate a 4-Way Handshake. If the EAPOL-Key frame with Request bit set has a key type
of Group/STAKey, the Authenticator shall change the GTK, initiate a 4-Way Handshake with
the Supplicant, and then execute the Group Key Handshake to all Supplicants.

Encrypted Key Data (bit 12) is set if the Key Data field is encrypted and is clear if the Key Data
field is not encrypted. This subfield shall be set, and the Key Data field shall be encrypted, if
any key material (e.g., GTK or STAKey) is included in the frame.

Reserved (bits 13—15). The sender shall set them to 0, and the receiver shall ignore the value of
these bits.

Copyright © 2004 IEEE. Al rights reserved. 79

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

80

¢)

d)

2

Key Length. This field is 2 octets in length, represented as an unsigned binary number. The value
defines the length in octets of the pairwise temporal key to configure into IEEE 802.11. See
Table 20f.

Table 20f—Cipher suite key lengths

Cipher suite CCMP TKIP WEP-40 WEP-104

Key length (octets) 16 32 5 13

Key Replay Counter. This field is 8 octets, represented as an unsigned binary number, and is ini-
tialized to 0 when the PMK is established. The Supplicant shall use the key replay counter in the
received EAPOL-Key frame when responding to an EAPOL-Key frame. It carries a sequence num-
ber that the protocol uses to detect replayed EAPOL-Key frames.

The Supplicant and Authenticator shall track the key replay counter per security association. The
key replay counter shall be initialized to 0 on (re)association. The Authenticator shall increment the
key replay counter on each successive EAPOL-Key frame.

When replying to a message from the Authenticator, the Supplicant shall use the Key Replay
Counter field value from the last valid EAPOL-Key frames received from the Authenticator. The
Authenticator should use the key replay counter to identify invalid messages to silently discard. The
Supplicant should also use the key replay counter and ignore EAPOL-Key frames with a Key
Replay Counter field value smaller than or equal to any received in a valid message. The local Key
Replay Counter field should not be updated until the after EAPOL-Key MIC is checked and is valid.
In other words, the Supplicant never updates the Key Replay Counter field for Message 1 in the
4-Way Handshake, as it includes no MIC. This implies the Supplicant must allow for retransmission
of Message 1 when checking for the key replay counter of Message 3.

The Supplicant shall maintain a separate key replay counter for sending EAPOL-Key request frames
to the Authenticator; the Authenticator also shall enforce monotonicity of a separate replay counter
to filter received EAPOL-Key Request frames.

NOTE—The key replay counter does not play any role beyond a performance optimization in the 4-Way Hand-
shake. In particular, replay protection is provided by selecting a never-before-used nonce value to incorporate
into the PTK. It does, however, play a useful role in the Group Key Handshake.

Key Nonce. This field is 32 octets. It conveys the ANonce from the Authenticator and the SNonce
from the Supplicant. It may contain O if a nonce is not required to be sent.

EAPOL-Key IV. This field is 16 octets. It contains the IV used with the KEK. It shall contain 0
when an IV is not required. It should be initialized by taking the current value of the global key
counter (see 8.5.7) and then incrementing the counter. Note that only the lower 16 octets of the
counter value will be used.

Key RSC. This field is 8 octets in length. It contains the receive sequence counter (RSC) for the
GTK being installed in IEEE 802.11. It is used in Message 3 of the 4-Way Handshake and
Message 1 of the Group Key Handshake, where it is used to synchronize the IEEE 802.11 replay
state. It may also be used in the Michael MIC Failure Report frame, to report the TSC field value of
the frame experiencing a MIC failure. It shall contain 0 in other messages. The Key RSC field gives
the current message number for the GTK, to allow a STA to identify replayed MPDUs. If the Key
RSC field value is less than 8 octets in length, the remaining octets shall be set to 0. The least signif-
icant octet of the TSC or PN should be in the first octet of the Key RSC field.

NOTE—The Key RSC field value for TKIP is the TSC in the first 6 octets and for CCMP is the PN in the first
6 octets. See Table 20g.

For WEP, the Key RSC value shall be set to 0 on transmit and shall not be used at the receiver.

Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004
Table 20g—Key RSC field
KeyRSC0 | KeyRSC1 | KeyRSC2 | KeyRSC3 | KeyRSC4 | KeyRSC5 | KeyRSC6 | KeyRSC7
TSCO TSC1 TSC2 TSC3 TSC4 TSC5 0 0
PNO PN1 PN2 PN3 PN4 PNS 0 0
h) Key MIC. This field is 16 octets in length when the Key Descriptor Version subfield is 1 or 2. The

i)

EAPOL-Key MIC is a MIC of the EAPOL-Key frames, from and including the Key Descriptor Ver-
sion field (of the Key Information field), to and including the Key Data field, calculated with the
Key MIC field set to 0. If the Encrypted Key Data subfield (of the Key Information field) is set, the
Key Data field is encrypted prior to computing the MIC.

1) Key Descriptor Version 1: HMAC-MDS; IETF RFC 2104 and IETF RFC 1321 together
define this function.

2) Key Descriptor Version 2: HMAC-SHA1-128.

Key Data Length. This field is 2 octets in length, taken to represent an unsigned binary number.
This represents the length of the Key Data field in octets. If the Encrypted Key Data subfield (of the
Key Information field) is set, the length is the length of the Key Data field after encryption, includ-
ing any padding.

Key Data. This field is a variable-length field that is used to include any additional data required for
the key exchange that is not included in the fixed fields of the EAPOL-Key frame. The additional
data may be zero or more information element(s) (such as the RSN information element) and zero or
more key data encapsulation(s) (KDEs) (such as GTK(s), STAKey(s), or PMKID(s)). Information
elements sent in the Key Data field include the Element ID and Length subfields. KDEs shall be
encapsulated using the format in Figure 43w.

Type (0xdd) Length oul Data Type Data

1 octet 1 octet 3 octets 1 octet (Length — 4) octets

Figure 43w—KDE format

The Type field shall be set to 0xdd. The Length field specifies the number of octets in the OUI, Data
Type, and Data fields. The order of the OUI field shall follow the ordering convention for MAC
addresses from 7.1.1.

Table 20h lists the KDE selectors defined by this amendment.

Table 20h—KDE

oul Data type Meaning
00-0F-AC 0 Reserved
00-0F-AC 1 GTK KDE
00-0F-AC 2 STAKey KDE
00-0F-AC 3 MAC address KDE

Copyright © 2004 IEEE. Al rights reserved. 81

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

82

Table 20h—KDE (continued)

(0Ju) § Data type Meaning
00-0F-AC 4 PMKID KDE
00-0F-AC 5-255 Reserved
Vendor OUI Any Vendor specific
Other Any Reserved

STAs shall ignore any information elements and KDEs they do not understand.

If the Encrypted Key Data subfield (of the Key Information field) is set, the entire Key Data field
shall be encrypted. If the Key Data field uses the NIST AES key wrap, then the Key Data field shall
be padded before encrypting if the key data length is less than 16 octets or if it is not a multiple of 8.
The padding consists of appending a single octet 0xdd followed by zero or more 0x00 octets. When
processing a received EAPOL-Key message, the receiver shall ignore this trailing padding. Key
Data fields that are encrypted, but do not contain the GroupKey or STAKey KDE, shall be accepted.

If the GroupKey or STAKey KDE is included in the Key Data field, but the Key Data field is not
encrypted, the EAPOL-Key frames shall be ignored.

The format of the GTK KDE is shown in Figure 43x.

KeylID (0,1,2, or 3) Tx Reserved (0) | Reserved (0) GTK

bits 0—1 bit 2 bit 3—7 1 octet (Length — 6) octets

Figure 43x—GTK KDE format

If the value of the Tx field is 1, then the IEEE 802.1X component shall configure the temporal key
derived from this KDE into its IEEE 802.11 STA for both transmission and reception.

If the value of the Tx field is 0, then the IEEE 802.1X component shall configure the temporal key
derived from this KDE into its IEEE 802.11 STA for reception only.

The format of the STAKey and peer MAC address KDE is shown in Figure 43y.

Reserved (0) STAKey MAC Address STAKey

2 octets 6 octets (Length — 12) octets

Figure 43y—STAKey KDE format

The format of the MAC address KDE is shown in Figure 43z.

MAC Address

Figure 43z—MAC address KDE format

Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

6 octets

Figure 43z—MAC address KDE format

The format of the PMKID KDE is shown in Figure 43aa.

PMKID

16 octets

Figure 43aa—PMKID KDE format

The following EAPOL-Key frames are used to implement the three different exchanges:

4-Way Handshake Message 1 is an EAPOL-Key frame with the Key Type subfield set to 1. The
Key Data field shall contain an encapsulated PMKID for the PMK that is being used in this key der-
ivation and need not be encrypted.

4-Way Handshake Message 2 is an EAPOL-Key frame with the Key Type subfield set to 1. The
Key Data field shall contain an RSN information element and need not be encrypted.

An ESS Supplicant’s SME shall insert the RSN information element it sent in its (Re)Association
Request frame. The RSN information element is included as transmitted in the management frame.
On receipt of Message 2, the Authenticator’s SME shall validate the selected security configuration
against the RSN information element received in the IEEE 802.11 (Re)Association Request.

An IBSS Supplicant’s SME shall insert an RSN information element containing the pairwise cipher
suite select it wants to negotiate. The Authenticator’s SME shall validate that the pairwise cipher
suite selected is one of its configured cipher suites and that the group cipher suite and AKM are con-
sistent.

4-Way Handshake Message 3 is an EAPOL-Key frame with the Key Type subfield set to 1. The
Key Data field shall contain one or two RSN information elements. If a group cipher has been nego-
tiated, this field shall also include an encapsulated GTK. This field shall be encrypted if a GTK is
included.

An Authenticator’s SME shall insert the RSN information element it sent in its Beacon or Probe
Response frame. The Supplicant’s SME shall validate the selected security configuration against the
RSN information element received in Message 3. If the second optional RSN information element is
present, the STA shall either use that cipher suite with its pairwise key or deauthenticate. In either
case, if the values do not match, then the receiver shall consider the RSN information element
modified and shall use the MLME-DEAUTHENTICATE.request primitive to break the association.
A security error should be logged at this time.

It may happen, for example, that a STA’s Supplicant selects a pairwise cipher suite which is adver-
tised by an AP, but which policy disallows for this particular STA. An Authenticator may, therefore,
insert a second RSN information element to overrule the STA’s selection. An Authenticator’s SME
shall insert the second RSN information element, after the first RSN information element, only for
this purpose. The pairwise cipher suite in the second RSN information element included shall be one
of the ciphers advertised by the Authenticator. All other fields in the second RSN information ele-
ment shall be identical to the first RSN information element.

An encapsulated GTK shall be included and the unencrypted length of the GTK is six less than the
length of the GTK KDE in octets. The entire Key Data field shall be encrypted as specified by the
key descriptor version.

Copyright © 2004 IEEE. Al rights reserved. 83

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

— 4-Way Handshake Message 4 is an EAPOL-Key frame with the Key Type subfield set to 1. The
Key Data field can be empty.

— Group Key Handshake Message 1 is an EAPOL-Key frame with the Key Type subfield set to 0.
The Key Data field shall contain a GTK KDE and shall be encrypted.

— Group Key Handshake Message 2 is an EAPOL-Key frame with the Key Type subfield set to 0.
The Key Data field can be empty.

— STAKey Handshake Message 1 is an EAPOL-Key frame with the Key Type subfield set to 0. The
Key Data field shall contain a STAKey KDE and shall be encrypted. A STAKey is used to protect
unicast traffic sent directly between two STAs that are associated with the same AP. The STAKey
shall be cryptographically separated from the GTK.

— STAKey Handshake Message 2 is an EAPOL-Key frame with the Key Type subfield set to 0. The
Key Data field shall contain a MAC address KDE.

The key wrap algorithm selected depends on the key descriptor version:

— Key Descriptor Version 1: RC4 is used to encrypt the Key Data field using the KEK field from the
derived PTK. No padding shall be used. The encryption key is generated by concatenating the
EAPOL-Key IV field and the KEK. The first 256 octets of the RC4 key stream shall be discarded
following RC4 stream cipher initialization with the KEK, and encryption begins using the 257h key
stream octet.

— Key Descriptor Version 2: AES key wrap, defined in IETF RFC 3394, shall be used to encrypt the
Key Data field using the KEK field from the derived PTK. The key wrap default initial value shall
be used.

NOTE—The cipher text output of the AES key wrap algorithm is 8 octets longer than the plaintext input.
8.5.2.1 STAKey Handshake for STA-to-STA link security

STA-to-STA keys are used to secure data frames directly to another STA, while associated with an AP. The
AP must establish an RSNA with each STA. After the STAs establish the STA-to-STA connection, the AP
sends the STAKey Handshake Message 1 to each STA, providing the key to use for securing the connection.
This STAKey is used to create a STAKeySA between the two STAs.

The originating STA requests the STAKey by sending an EAPOL-Key frame to the AP, with the KeyType
set to 0, Request bit set to 1, and with a MAC address KDE in the Key Data field. The cipher used with the
STAKey shall be the cipher indicated in the Key Descriptor Version subfield in the EAPOL-Key frame:
Version 1 indicates TKIP and Version 2 indicates CCMP.

The STAKey EAPOL-Key exchange provides a mechanism for obtaining the keys to be used for direct
STA-to-STA communication in an infrastructure BSS. A STA should use this exchange prior to transferring
any direct STA-to-STA data frames. The STAKeys should be deleted when the STA to STA connection is
terminated. Figure 43ab depicts the sequence of events required to configure a STAKey.

8.5.2.2 EAPOL-Key frame notation
The following notation is used throughout the remainder of 8.5 to represent EAPOL-Key frames:

EAPOL-Key(S, M, A, I, K, KeyRSC, ANonce/SNonce, MIC, RSNIE, GTK[N])

84 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Initigtor STA AP Peer STA

bl LIAE-

STAKeyestablished
Indication l S5TAKey Request [Peer STA MAC

address }

b J

STAKeyMessage 1 (Initiator STA
MAC address, STAKey)

STAKey Message 2 (Initiator STA
MAC address)

STAKey Message 1 (Peer STA MAC
address STAK ey)

STAKey Message 2 (Peer STA MAC
address)

Figure 43ab—STAKey message exchange

where

S means the initial key exchange is complete. This is the Secure bit of the Key Informa-
tion field.

M means the MIC is available in message. This should be set in all messages except
Message | of a 4-Way Handshake. This is the Key MIC bit of the Key Informa-
tion field.

A means a response is required to this message. This is used when the receiver should
respond to this message. This is the Key Ack bit of the Key Information field.

I is the Install bit: Install/Not install for the pairwise key. This is the Install bit of the
Key Information field.

K is the key type: P (Pairwise), G (Group/STAKey). This is the Key Type bit of the Key
Information field.

KeyRSC is the key RSC. This is the Key RSC field.

ANonce/SNonce is the Authenticator/Supplicant nonce. This is the Key Nonce field.

MIC is the integrity check, which is generated using the KCK. This is the Key MIC field.

RSNIE is the RSN information element. This is in the Key Data field.

GTK is the encapsulated GTK. This is in the Key Data field.

N is the key identifier, which specifies which index should be used for this GTK. Index
0 shall not be used for GTKs, except in mixed environments, as described in
8.5.1.

8.5.3 4-Way Handshake

RSNA defines a protocol using IEEE 802.1X EAPOL-Key frames called the 4-Way Handshake. The hand-
shake completes the IEEE 802.1X authentication process. The information flow of the 4-Way Handshake is
as follows:

Message 1. Authenticator — Supplicant: EAPOL-Key(0,0,1,0,P,0,ANonce,0,0,0)
Message 2. Supplicant — Authenticator: EAPOL-Key(0,1,0,0,P,0,SNonce,MIC,RSNIE,0)

Message 3. Authenticator — Supplicant:
EAPOL-Key(1,1,1,1,P,KeyRSC,ANonce, MIC,RSNIE,GTK[N])

Message 4. Supplicant — Authenticator: EAPOL-Key(1,1,0,0,P,0,0,MIC,0,0)

Copyright © 2004 IEEE. Al rights reserved. 85

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Here, the following assumptions apply:
— EAPOL-Key(+) denotes an EAPOL-Key frame conveying the specified argument list, using the
notation introduced in 8.5.2.2.
— ANonce is a nonce the Authenticator contributes. ANonce has the same value in Message 1 and
Message 3.
— SNonce is a nonce from the Supplicant.
— P means the pairwise bit is set.

— The MIC is computed over the body of the EAPOL-Key frame (with the Key MIC field first zeroed
before the computation) using the KCK defined in 8.5.1.2.

— RSNIE represents the appropriate RSN information elements.

— GTK]N] represents the encapsulated GTK with its key identifier.
NOTE—While the MIC calculation is the same in each direction, the Key Ack bit is different in each direction.
It is set in EAPOL-Key frames from the Authenticator and clear in EAPOL-Key frames from the Supplicant.
4-Way Handshake requests from the Supplicant have the Request bit set. The Authenticator and Supplicant

must check these bits to stop reflection attacks. Message 1 contents must not update state, in particular the keys
in use, until the data are validated with Message 3.

8.5.3.1 4-Way Handshake Message 1

Message 1 uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type = N —see 8.5.2
Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MDS) or 2 (NIST AES key wrap
with HMAC-SHA1-128)
Key Type = 1 (Pairwise)
Install =0
Key Ack =1
Key MIC=0
Secure =0
Error=0
Request =0
Encrypted Key Data =0
Reserved = 0 — unused by this protocol version
Key Length = Cipher-suite-specific; see Table 20f
Key Replay Counter = n — to allow Authenticator to match the right Message 2 from Supplicant
Key Nonce = ANonce
EAPOL-Key IV=0
Key RSC=0
Key MIC =0
Key Data Length = 22
Key Data = PMKID for the PMK being used during this exchange

The Authenticator sends Message 1 to the Supplicant at the end of a successful IEEE 802.1X authentication,
after PSK authentication is negotiated, when a cached PMKSA is used, or after a STA requests a new key.
On reception of Message 1, the Supplicant determines whether the Key Replay Counter field value has been
used before with the current PMKSA. If the Key Replay Counter field value is less than or equal to the cur-
rent local value, the Supplicant discards the message. Otherwise, the Supplicant

a) Generates a new nonce SNonce.
b) Derives PTK.
c¢) Constructs Message 2.

86 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

8.5.3.2 4-Way Handshake Message 2

Message 2 uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type = N —see 8.5.2

Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MDS) or 2 (NIST AES key wrap
with HMAC-SHA1-128) — same as Message 1
Key Type = 1 (Pairwise) — same as Message |

Install =0
Key Ack=0
Key MIC=1

Secure = 0 — same as Message 1

Error = 0 — same as Message 1

Request = 0 — same as Message 1

Encrypted Key Data =0

Reserved = 0 — unused by this protocol version

Key Length =0

Key Replay Counter = n — to let the Authenticator know to which Message 1 this corresponds
Key Nonce = SNonce

EAPOL-Key IV=0

Key RSC=0

Key MIC = MIC(KCK, EAPOL) — MIC computed over the body of this EAPOL-Key frame with the
Key MIC field first initialized to 0

Key Data Length = length in octets of included RSN information element
Key Data = included RSN information element — the sending STA’s RSN information element

The Supplicant sends Message 2 to the Authenticator.

On reception of Message 2, the Authenticator checks that the key replay counter corresponds to the out-
standing Message 1. If not, it silently discards the message. Otherwise, the Authenticator

a) Derives PTK.
b) Verifies the Message 2 MIC.

1) If'the calculated MIC does not match the MIC that the Supplicant included in the EAPOL-Key
frame, the Authenticator silently discards Message 2.

2) If the MIC is valid, the Authenticator checks that the RSN information element bit-wise
matches that from the (Re)Association Request message.

i) If these are not exactly the same, the Authenticator uses MLME-DEAUTHENTI-
CATE.request primitive to terminate the association.

ii) If they do match bit-wise, the Authenticator constructs Message 3.
8.5.3.3 4-Way Handshake Message 3

Message 3 uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type =N — see 8.5.2

Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MDS) or 2 (NIST AES key wrap
with HMAC-SHA1-128) — same as Message 1
Key Type = 1 (Pairwise) — same as Message 1

Copyright © 2004 IEEE. Al rights reserved. 87

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Install = 0/1 — 0 only if the AP does not support key mapping keys, or if the STA has the No
Pairwise bit (in the RSN Capabilities field) set and only the group key will be used

Key Ack=1

Key MIC=1

Secure = 1 (keys installed)

Error = 0 — same as Message 1

Request = 0 — same as Message 1

Encrypted Key Data =1

Reserved = 0 — unused by this protocol version
Key Length = Cipher-suite-specific; see Table 20f
Key Replay Counter = n+1
Key Nonce = ANonce — same as Message 1

EAPOL-Key IV = 0 (Version 2) or random (Version 1)

Key RSC = starting sequence number that the Authenticator’s STA will use in MPDUs protected by
GTK

Key MIC = MIC(KCK, EAPOL) — MIC computed over the body of this EAPOL-Key frame with the
Key MIC field first initialized to 0

Key Data Length = length in octets of included RSN information elements and GTK

Key Data = the AP’s Beacon/Probe Response frame’s RSN information element, and, optionally, a
second RSN information element that is the Authenticator’s pairwise cipher suite assignment,
and, if a group cipher has been negotiated, the encapsulated GTK and the GTK’s key identifier
(see 8.5.2)

The Authenticator sends Message 3 to the Supplicant.

On reception of Message 3, the Supplicant silently discards the message if the Key Replay Counter field
value has already been used or if the ANonce value in Message 3 differs from the ANonce value in
Message 1. The Supplicant also

a) Verifies the RSN information element.

1) If it is not identical to that the STA received in the Beacon or Probe Response frame, the STA
shall disassociate. If a second RSN information element is provided in the message, the Suppli-
cant shall use the pairwise cipher suite specified in the second RSN information element or
deauthenticate.

2) Ifthe RSN information element is correct, the Supplicant proceeds to Step b.
b) Verifies the Message 3 MIC.

1) If the calculated MIC does not match the MIC that the Authenticator included in the EAPOL-
Key frame, the Supplicant silently discards Message 3.

2) Otherwise the Supplicant
i) Updates the last-seen value of the Key Replay Counter field.
ii) Constructs Message 4.
iii) Sends Message 4 to the Authenticator.

iv) Uses the MLME-SETKEY S.request primitive to configure the IEEE 802.11 MAC to send
and receive Class 3 unicast MPDUs protected by the PTK. The GTK is also configured by
MLME-SETKEYS primitive.

88 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

8.5.3.4 4-Way Handshake Message 4

Message 4 uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type = N —see 8.5.2

Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MDS5) or 2 (NIST AES key wrap
with HMAC-SHA1-128) — same as Message 1

Key Type = 1 (Pairwise) — same as Message 1
Install =0
Key Ack = 0 — this is the last message
Key MIC = 1
Secure =1
Error=0
Request =0
Encrypted Key Data =0
Reserved = 0 — unused by this protocol version
Key Length =0
Key Replay Counter = n+1
Key Nonce =0
EAPOL-Key IV=0
Key RSC=0
Key MIC = MIC(KCK, EAPOL) — MIC computed over the body of this EAPOL-Key frame with the
Key MIC field first initialized to 0
Key Data Length =0

Key Data = none required

The Supplicant sends Message 4 to the Authenticator. Note that when the 4-Way Handshake is first used,
Message 4 is sent in the clear.

On reception of Message 4, the Authenticator verifies that the Key Replay Counter field value is one that it
used on this 4-Way Handshake; if it is not, it silently discards the message. Otherwise, the Authenticator

a) Checks the MIC.

1) If the calculated MIC does not match the MIC that the Supplicant included in the EAPOL-Key
frame, the Authenticator silently discards Message 4.

2) If the MIC is valid, the Authenticator uses the MLME-SETKEYSS.request primitive to config-
ure the PTK into the IEEE 802.11 MAC.

b) Updates the Key Replay Counter field, so that it will use a fresh value if a rekey becomes necessary.
8.5.3.5 4-Way Handshake implementation considerations

If the Authenticator does not receive a reply to its messages, it shall attempt dot tRSNAConfigPairwi-
seUpdateCount transmits of the message, plus a final timeout. The retransmit timeout value shall be
100 ms for the first timeout, half the listen interval for the second timeout, and the listen interval for subse-
quent timeouts. If there is no listen interval, then 100 ms shall be used for all timeout values. If it still has not
received a response after these retries, then the Authenticator should deauthenticate the STA.

If the STA does not receive Message 1 within the expected time interval (prior to IEEE 802.1X timeout), it
should disassociate, deauthenticate, and try another AP/STA.

Copyright © 2004 IEEE. Al rights reserved. 89

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

The Authenticator should ignore EAPOL-Key frames it is not expecting in reply to messages it has sent or
EAPOL-Key frames with the Ack bit set. This stops an attacker from sending the first message to the Sup-
plicant who responds to the Authenticator.

An implementation should save the KCK and KEK beyond the 4-Way Handshake, as they are needed by the
Group Key Handshake and to recover from TKIP MIC failures.

The Supplicant uses the MLME-SETKEY S.request primitive to configure the temporal key from 8.5.1 into
its STA after sending Message 4 to the Authenticator.

NOTES

1—If the RSN information element check for Message 2 or Message 3 fails, IEEE 802.1X should log an error and deau-
thenticate the peer.

2—The Supplicant should check that if the RSN information element specified a pairwise cipher suite, then the 4-Way
Handshake did specify to configure the temporal key portion of the PTK into the IEEE 802.11 STA.

8.5.3.6 Sample 4-Way Handshake (informative)

After IEEE 802.1X authentication completes by the AP sending an EAP-Success, the AP initiates the 4-Way
Handshake. See Figure 43ac.

B0211 Station 802114ccess Paint
8021 5 upplicant B027 Authenticatar
| SMonce=s Random | AMonce= Random

L

| EAPOLKey(0.01.0,P.0 4Nonce0.0.10)

| Calculate PTE using &Monce and SNonce |

EAPOL:Key[0.1,0,0.P, 0.5 Nancs MIC, RSH 1E.0)

‘ Calculate PTE uzing AMonce and SMonce ‘

EAPOLKep(1,1,1,1.F, Key RSC ANonceMIC, RSN IE G TKK.eplDi)
EAPOLKey(1,1,0.0,P, 0.0, MIC,0.0)

¥

Set GTE for KeplD

Set Temporal Encryption and MIC Keys ‘ ‘ Set Temporal Encryption and MIC Keps ‘

Figure 43ac—Sample 4-Way Handshake

The 4-Way Handshake consists of the following steps:
a) The Authenticator sends an EAPOL-Key frame containing an ANonce.
b) The Supplicant derives a PTK from ANonce and SNonce.

¢) The Supplicant sends an EAPOL-Key frame containing SNonce, the RSN information element from
the (Re)Association Request frame, and a MIC.

d) The Authenticator derives PTK from ANonce and SNonce and validates the MIC in the EAPOL-
Key frame.

e) The Authenticator sends an EAPOL-Key frame containing ANonce, the RSN information element
from its Beacon or Probe Response messages, MIC, whether to install the temporal keys, and the
encapsulated GTK.

f) The Supplicant sends an EAPOL-Key frame to confirm that the temporal keys are installed.

90 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

8.5.3.7 4-Way Handshake analysis (informative)

This subclause makes the trust assumptions used in this protocol explicit. The protocol assumes the
following:

— The PMK is known only by the Supplicant’s STA and the Authenticator’s STA.
— The Supplicant’s STA uses IEEE 802 address SPA.
— The Authenticator’s STA uses IEEE 802 address AA.

In many instantiations the RSNA architecture immediately breaks the first assumption because the IEEE
802.1X AS also knows the PMK. Therefore, additional assumptions are required:

— The AS does not expose the PMK to other parties.

— The AS does not masquerade as the Supplicant to the Authenticator.
— The AS does not masquerade as the Authenticator to the Supplicant.
— The AS does not masquerade as the Supplicant’s STA.

— The AS does not masquerade as the Authenticator’s STA.

The protocol also assumes this particular Supplicant-Authenticator pair is authorized to know this PMK and
to use it in the 4-Way Handshake. If any of these assumptions are broken, then the protocol fails to provide
any security guarantees.

The protocol also assumes that the AS delivers the correct PMK to the AP with IEEE 802 address AA and
that the non-AP STA with IEEE 802 address SPA hosts the Supplicant that negotiated the PMK with the AS.
None of the protocols defined by IEEE Std 802.11, 1999 Edition, and IEEE P802.1X-REV permit the AS,
the Authenticator, the Supplicant, or either STA to verify these assumptions.

The PTK derivation step

PTK <« PRF-X(PMK, “Pairwise key expansion” || Min(AA,SPA) || Max(AA,SPA) ||
Min(ANonce,SNonce) || Max(ANonce,SNonce))

performs a number of functions:
— Including the AA and SPA in the computation
— Binds the PTK to the communicating STAs and

— Prevents undetected man-in-the-middle attacks against 4-Way Handshake messages between
the STAs with these two IEEE 802 addresses.

— If ANonce is randomly selected, including ANonce
— Guarantees the STA at IEEE 802 address AA that PTK is fresh,
— Guarantees that Message 2 and Message 4 are live, and
— Uniquely identifies PTK as <AA, ANonce>.

— If SNonce is randomly selected, including SNonce
— Guarantees the STA at IEEE 802 address SPA that PTK is fresh,
— Guarantees that Message 3 is live, and
— Uniquely identifies PTK as <SPA, SNonce>.

Choosing the nonces randomly helps prevent precomputation attacks. With unpredictable nonces, a man-in-
the-middle attack that uses the Supplicant to precompute messages to attack the Authenticator cannot
progress beyond Message 2, and a similar attack against the Supplicant cannot progress beyond Message 3.
The protocol can be executed further before an error if predictable nonces are used.

Copyright © 2004 IEEE. Al rights reserved. 91

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Message 1 delivers ANonce to the Supplicant and initiates negotiation for a new PTK. It identifies AA as the
peer STA to the Supplicant’s STA. If an adversary modifies either of the addresses or ANonce, the Authen-
ticator will detect the result when validating the MIC in Message 2. Message 1 does not carry a MIC, as it is
impossible for the Supplicant to distinguish this message from a replay without maintaining state of all secu-
rity associations through all time (PMK might be a static key).

Message 2 delivers SNonce to the Authenticator so it can derive the PTK. If the Authenticator selected
ANonce randomly, Message 2 also demonstrates to the Authenticator that the Supplicant is live, that the
PTK is fresh, and that there is no man-in-the-middle attack, as the PTK includes the IEEE 802 MAC
addresses of both. Inclusion of ANonce in the PTK derivation also protects against replay. The MIC pre-
vents undetected modification of Message 2 contents.

Message 3 confirms to the Supplicant that there is no man-in-the-middle attack. If the Supplicant selected
SNonce randomly, it also demonstrates that the PTK is fresh and that the Authenticator is live. The MIC
again prevents undetected modification of Message 3.

While Message 4 serves no cryptographic purpose, it serves as an acknowledgment to Message 3. It is
required to ensure reliability and to inform the Authenticator that the Supplicant has installed the PTK and
GTK and hence can receive encrypted frames.

The PTK and GTK are installed by using MLME.SETKEY S.request primitive after Message 4 is sent. The
PTK is installed before the GTK.

Then the 4-Way Handshake uses a correct, but unusual, mechanism to guard against replay. As noted earlier
in this subclause, ANonce provides replay protection to the Authenticator, and SNonce to the Supplicant. In
most session initiation protocols, replay protection is accomplished explicitly by selecting a nonce randomly
and requiring the peer to reflect the received nonce in a response message. The 4-Way Handshake instead
mixes ANonce and SNonce into the PTK, and replays are detected implicitly by MIC failures. In particular,
the Key Replay Counter field serves no cryptographic purpose in the 4-Way Handshake. Its presence is not
detrimental, however, and it plays a useful role as a minor performance optimization for processing stale
instances of Message 2. This replay mechanism is correct, but its implicit nature makes the protocol harder
to understand than an explicit approach.

It is critical to the correctness of the 4-Way Handshake that at least one bit differs in each message. Within
the 4-Way Handshake, Message 1 can be recognized as the only one with the Key MIC bit clear, meaning
Message 1 does not include the MIC, while Message 2 through Message 4 do. Message 3 differs from Mes-
sage 2 by not asserting the Ack bit and from Message 4 by asserting the Ack Bit. Message 2 differs from
Message 4 by including the RSN information element.

Request messages cannot be confused with 4-Way Handshake messages because the former asserts the
Request bit and 4-Way Handshake messages do not. Group Key Handshake messages cannot be mistaken
for 4-Way Handshake messages because they assert a different key type.

8.5.4 Group Key Handshake

The Authenticator uses the Group Key Handshake to send a new GTK to the Supplicant.

The Authenticator may initiate the exchange when a Supplicant is disassociated or deauthenticated.
Message 1: Authenticator — Supplicant: EAPOL-Key(1,1,1,0,G,Key RSC,0, MIC, 0,GTK[N])
Message 2: Supplicant — Authenticator: EAPOL-Key(1,1,0,0,G,0,0,MIC,0,0)

Here, the following assumptions apply:

— Key RSC denotes the last frame sequence number sent using the GTK.

92 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

— GTK]N] denotes the GTK encapsulated with its key identifier as defined in 8.5.2 using the KEK
defined in 8.5.1.2 and associated I'V.

— The MIC is computed over the body of the EAPOL-Key frame (with the MIC field zeroed for the
computation) using the KCK defined in 8.5.1.2.

The Supplicant may trigger a Group Key Handshake by sending an EAPOL-Key frame with the Request bit
set to 1 and the type of the Group Key bit.

An Authenticator shall do a 4-Way Handshake before a Group Key Handshake if both are required to be
done.

NOTE—The Authenticator cannot initiate the Group Key Handshake until the 4-Way Handshake completes
successfully.

8.5.4.1 Group Key Handshake Message 1

Message 1 uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type =N —see 8.5.2
Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MDS) or 2 (NIST AES key wrap
with HMAC-SHA1-128)
Key Type = 0 (Group/STAKey)

Install =0

Key Ack =1

Key MIC =1

Secure = 1

Error=0

Request =0

Encrypted Key Data = 1
Reserved =0

Key Length =0

Key Replay Counter = n+2

Key Nonce =0

EAPOL-Key IV =0 (Version 2) or random (Version 1)

Key RSC = last transmit sequence number for the GTK

Key MIC = MIC(KCK, EAPOL)

Key Data Length = Cipher-suite-specific; see Table 20f

Key Data = encrypted, encapsulated GTK and the GTK’s key identifier (see 8.5.2)

The Authenticator sends Message 1 to the Supplicant.

On reception of Message 1, the Supplicant

a) Verifies that the Key Replay Counter field value has not yet been seen before, i.c., its value is
strictly larger than that in any other EAPOL-Key frame received thus far during this session.

b) Verifies that the MIC is valid, i.e., it uses the KCK that is part of the PTK to verify that there is no
data integrity error.

c¢) Uses the MLME-SETKEYS.request primitive to configure the temporal GTK into its IEEE 802.11
MAC.

d) Responds by creating and sending Message 2 of the Group Key Handshake to the Authenticator and
incrementing the replay counter.

Copyright © 2004 IEEE. Al rights reserved. 93

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

NOTE—The Authenticator must increment and use a new Key Replay Counter field value on every Message 1
instance, even retries, because the Message 2 responding to an earlier Message 1 may have been lost. If the
Authenticator did not increment the replay counter, the Supplicant will discard the retry, and no responding
Message 2 will ever arrive.

8.5.4.2 Group Key Handshake Message 2

Message 2 uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type =N —see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MDS5) or 2 (NIST AES key wrap
with HMAC-SHA1-128) — same as Message 1

Key Type = 0 (Group/STAKey) — same as Message 1
Install =0
Key Ack=0
Key MIC =1
Secure =1
Error=0
Request =0
Encrypted Key Data =0
Reserved =0
Key Length =0
Key Replay Counter = n+2 — same as Message 1
Key Nonce =0
EAPOL-Key IV=0
Key RSC=0
Key MIC = MIC(KCK, EAPOL)
Key Data Length =0

Key Data = none required

On reception of Message 2, the Authenticator

a) Verifies that the Key Replay Counter field value matches one it has used in the Group Key Hand-
shake.

b) Verifies that the MIC is valid, i.e., it uses the KCK that is part of the PTK to verify that there is no
data integrity error.

8.5.4.3 Group Key Handshake implementation considerations

If the Authenticator does not receive a reply to its messages, its shall attempt dot 1 1IRSNAConfigGroup-
UpdateCount transmits of the message, plus a final timeout. The retransmit timeout value shall be 100 ms
for the first timeout, half the listen interval for the second timeout, and the listen interval for subsequent tim-
eouts. If there is no listen interval, then 100 ms shall be used for all timeout values. If it still has not received
a response after this, then the Authenticator’s STA should use the MLME-DEAUTHENTICATE.request
primitive to deauthenticate the STA.

8.5.4.4 Sample Group Key Handshake (informative)

The state machines in 8.5.6 and 8.5.7 change the GTK in use by the network. See Figure 43ad.

94 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

80211 Stati_un 802 11 Azcess Point
B0Z.1% Supplicant 802.1% Authenticatar

GMonce=Get Mext
Key Counter

EAPOL-Key (1,1,1,0, G, Key RSC, 0, MIC, 0, GTKKeylD])

Decrypt GTK
Setin Key ID

EAPOL-Key(1,1,0,0,G,0,0,MIC,0,0)

ﬁ'

Set GTKin Key ID

Figure 43ad—Sample Group Key Handshake

The following steps occur:

a) The Authenticator generates a new GTK. It encapsulates the GTK and sends an EAPOL-Key frame
containing the GTK (Message 1), along with the last sequence number used with the GTK (RSC).

b) On receiving the EAPOL-Key frame, the Supplicant validates the MIC, decapsulates the GTK, and
uses the MLME-SETKEY S.request primitive to configure the GTK and the RSC in its STA.

¢) The Supplicant then constructs and sends an EAPOL-Key frame in acknowledgment to the
Authenticator.

d) Onreceiving the EAPOL-Key frame, the Authenticator validates the MIC. If the GTK is not already
configured into IEEE 802.11 MAC, after the Authenticator has delivered the GTK to all associated
STAs, it uses the MLME-SETKEY S.request primitive to configure the GTK into the IEEE 802.11
STA.

8.5.5 STAKey Handshake

A STA may request the AP to establish a STAKeySA between itself and another STA associated with the
same AP. Unlike the 4-Way Handshake and Group Key Handshake, the STAKey Handshake is initiated by
the STA. Thus, the STAKey Request message is protected by the initiating STA’s EAPOL-Key request
replay counter. This is a monotonically increasing number. The AP maintains a separate request replay
counter per STA to enforce replay protection.
STAKey Request: Initiating STA — Authenticator:
EAPOL-Key(1,1,0,0,G/0,0,0, MIC, 0,Peer MAC KDE)

Message 1: Authenticator — Peer STA:
EAPOL-Key(1,1,1,0,G/0,0,0, MIC, 0,Initiator MAC KDE, STAKey)

Message 2: Peer STA— Authenticator:
EAPOL-Key(1,1,0,0,G/0,0,0,MIC,0,Initiator MAC KDE, STAKey)

Message 1: Authenticator — Initiating STA:
EAPOL-Key(1,1,1,0,G/0,0,0, MIC, 0,Peer MAC KDE, STAKey)

Message 2: Initiating STA— Authenticator:
EAPOL-Key(1,1,0,0,G/0,0,0,MIC,0,Peer MAC KDE, STAKey)

Copyright © 2004 IEEE. Al rights reserved. 95

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

8.5.5.1 STAKey Request message

The STAKey Request message uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type = N —see 8.5.2

Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MDS5) or 2 (NIST AES key wrap
with HMAC-SHA1-128)
Key Type = 0 (Group/STAKey)

Install =0

Key Ack=0

Key MIC =1

Secure = 1

Error=0

Request =1

Encrypted Key Data =0
Reserved =0

Key Length =0

Key Replay Counter = request replay counter of initiating STA
Key Nonce =0

EAPOL-Key IV=0

Key RSC=0

Key MIC = MIC(initiating STA’s KCK, EAPOL)

Key Data Length = Length of Key Data field in octets

Key Data = peer MAC address KDE (see Figure 43z)

A STA sends a protected STAKey Request message to the AP with the MAC address of the peer STA. On
reception of a STAKey Request message, the AP verifies that the received Key Replay Counter field value
is equal to or larger than its local copy of the counter. It then verifies that the MIC is valid and sets the local
Key Replay Counter field value for the initiating STA to the received value.

8.5.5.2 STAKey Message 1

The STAKey Message 1 uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type =N —see 8.5.2
Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MDS) or 2 (NIST AES key wrap
with HMAC-SHA1-128)
Key Type = 0 (Group/STAKey)

Install = 1

Key Ack=1

Key MIC = 1

Secure = 1

Error=0

Request =0

Encrypted Key Data = 1
Reserved =0

Key Length = Cipher-suite-specific; see Table 20f

Key Replay Counter = n+3 (assuming this follows the Group Key Handshake between the peer STA
and the AP)

Key Nonce =0

96 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

EAPOL-Key IV =0 (Version 2) or random (Version 1)

Key RSC=0

Key MIC = MIC(peer STA’s KCK, EAPOL)

Key Data Length = length of Key Data field in octets

Key Data = encrypted initiator MAC address KDE and STAKey (see Figure 43y)

In response to a STAKey Request message, the AP sends STAKey Message 1 to the peer STA identified by
the Request message. On reception of a STAKey Message 1, the STA verifies that the received Key Replay
Counter field value was never seen before in the context of the current PMKSA. It then validates the MIC
and sets the local Key Replay Counter field value from the received value in the STAKey Message 1. Next,
the peer STA configures the STAKey for direct communication with the initiating STA. Finally, it sends
STAKey Message 2 to the AP.

8.5.5.3 STAKey Message 2

The STAKey Message 2 uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type =N — see 8.5.2

Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MDYS5) or 2 (NIST AES key wrap
with HMAC-SHA1-128)
Key Type = 0 (Group/STAKey)
Install =0
Key Ack=0
Key MIC=1
Secure =1
Error=0
Request =0
Encrypted Key Data = 0
Reserved =0

Key Length =0

Key Replay Counter = n+3 (as in STAKey Message 1)
Key Nonce =0

EAPOL-Key IV =0

Key RSC=0

Key MIC = MIC(peer STA’s KCK, EAPOL)

Key Data Length = length of Key Data field in octets
Key Data = initiator MAC Address KDE (see Figure 43z)

STAKey Message 2 is an integrity and replay protected acknowledgement to STAKey Message 1. Upon
reception of a STAKey Message 2, the AP verifies that the received Key Replay Counter field value is the
same value it sent in STAKey Message 1. It then validates the MIC and increments its Key Replay Counter
field value for the peer STA. The AP finally sends STAKey Message 1 to the initiating STA.

8.5.5.4 STAKey Message 1 and Message 2 to the initiating STA
After the STAKey message exchange with the peer STA, the AP initiates the same STAKey Message 1 and
Message 2 exchange with the initiating STA. This distributes the same STAKey to the initiating STA and

uses identical messages to that in the STAKey exchange with the peer STA, except for the following
differences:

Copyright © 2004 IEEE. Al rights reserved. 97

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

1) The Key Replay Counter field value, KCK, and KEK correspond to the PMKSA between the AP
and the initiating STA instead of those for the PMKSA between the AP and the peer STA.

2) The initiating STA’s MAC and peer STA’s MAC KDE:s are reversed.
3) Ifthe exchange fails, then the AP notifies the peer STA to delete the STAKey SA.

8.5.6 RSNA Supplicant key management state machine

The Supplicant shall reinitialize the Supplicant state machine whenever its system initializes. A Supplicant
enters the AUTHENTICATION state on an event from the MAC that requests another STA to be authenti-
cated. A Supplicant enters the STAKEYSTART state on receiving an EAPOL-Key frame from the Authen-
ticator. If the MIC or any of the EAPOL-Key frames fails, the Supplicant silently discards the frame.
Figure 43ae depicts the Supplicant state machine.

datt 1R SHAConfigsALifetime timeout
Authenti cationF ailedJ' J'
Authenti cationR equest
DeautheticationReguest || Init
DlSconMNECTED ALUTHEMTICATION
AuthenticationFailed = FALSE MhemicﬂtiDnHequesrt = FALSE
Stalisconnect () Snonce = Counter++
PTH = GTK[O.N] =0
Jr LcT 802 13 portvalid = F ALSE
IMITIALZE I G021 ¥ portContral = Auto
keycount = 0 5021 porEnable = TRUE
Init = FAL SE
Eﬂza&theﬂrﬂicﬁtionl? equest = FALSE EAPOLKeyR ecieved
807 1% portEnable = F ALSE 8& MICerified
MLME -Deletekeys RequestPTH) 3 + E &P OLKeyR ecieved
ML E -Dreletebieys ReguestiGT RO, M STAKEYSTART && MICWerified
802 1% portalid = FALSE T T

Figure 43ae—RSNA Supplicant key management state machine

Unconditional transfer (UCT) means the event triggers an immediate transition.

This state machine does not use timeouts or retries. The IEEE 802.1X state machine has timeouts that
recover from authentication failures, etc.

The management entity will send an authentication request event when it wants an Authenticator authenti-
cated. This can be before or after the STA associates to the AP. In an IBSS environment, the event will be
generated when a Probe Response frame is received.

8.5.6.1 Supplicant state machine states

The following list summarizes the states of the Supplicant state machine:

AUTHENTICATION: A STA’s Supplicant enters this state when it sends an IEEE 802.1X
AuthenticationRequest to authenticate to a SSID.

— DISCONNECTED: A STA’s Supplicant enters this state when IEEE 802.1X authentication fails.
The Supplicant executes StaDisconnect and enters the INITIALIZE state.

— INITIALIZE: A STA’s Supplicant enters this state from the DISCONNECTED state, when it
receives Disassociation or Deauthentication messages or when the STA initializes, causing the
STA’s Supplicant to initialize the key state variables.

98 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

STAKEYSTART: A STA’s Supplicant enters this state when it receives an EAPOL-Key frame. All
the information to process the EAPOL-Key frame is in the message and is described in the StaPro-
cessEAPOL-Key procedure.

8.5.6.2 Supplicant state machine variables

The following list summarizes the variables used by the Supplicant state machine:

DeauthenticationRequest — The Supplicant sets this variable to TRUE if the Supplicant’s STA
reports it has received Disassociation or Deauthentication messages.

AuthenticationRequest — The Supplicant sets this variable to TRUE if its STA’s IEEE 802.11 man-
agement entity reports it wants an SSID authenticated. This can be on association or at other times.

AuthenticationFailed — The Supplicant sets this variable to TRUE if the IEEE 802.1X authentication
failed. The Supplicant uses the MLME-DISASSOCIATE.request primitive to cause its STA to dis-
associate from the Authenticator’s STA.

EAPOLKeyReceived — The Supplicant sets this variable to TRUE when it receives an EAPOL-Key
frame.

IntegrityFailed — The Supplicant sets this variable to TRUE when its STA reports that a fatal data
integrity error (e.g., Michael failure) has occurred.

NOTE—A Michael failure is not the same as MICVerified because IntegrityFailed is generated if the Michael
integrity check fails; MICVerified is generated from validating the EAPOL-Key integrity check. Note also the
STA does not generate this event for CCMP because countermeasures are not required.

MICVerified — The Supplicant sets this variable to TRUE if the MIC on the received EAPOL-Key
frame verifies as correct. The Supplicant silently discards any EAPOL-Key frame received with an
invalid MIC.

Counter — The Supplicant uses this variable as a global counter used for generating nonces.
SNonce — This variable represents the Supplicant’s nonce.
PTK — This variable represents the current PTK.

TPTK — This variable represents the current PTK until Message 3 of the 4-Way Handshake arrives
and is verified.

GTK][] — This variable represents the current GTKs for each group key index.
PMK — This variable represents the current PMK.

keycount — This variable is used in IBSS mode to decide when all the keys have been delivered and
an IBSS link is secure.

802.1X::XXX — This variable denotes another IEEE 802.1X state variable XXX not specified in this
amendment.

8.5.6.3 Supplicant state machine procedures

The following list summarizes the procedures used by the Supplicant state machine:

STADisconnect — The Supplicant invokes this procedure to disassociate and deauthenticate its STA
from the AP.

MIC(x) — The Supplicant invokes this procedure to compute a MIC of the data x.

CheckMIC() — The Supplicant invokes this procedure to verify a MIC computed by the MIC()
function.

StaProcessEAPOL-Key — The Supplicant invokes this procedure to process a received EAPOL-
Key frame. The pseudo-code for this procedure is as follows:

StaProcessEAPOL-Key (S, M, 4, I, K, RSC, ANonce, RSC, MIC, RSNIE, GTK/N])

TPTK <« PTK
TSNonce < 0

Copyright © 2004 IEEE. Al rights reserved. 99

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

PRSC <« 0
UpdatePTK < 0
State <~ UNKNOWN
if M =1 then
if Check MIC(PTK, EAPOL-Key frame) fails then
State < FAILED
else
State < MICOK
endif
endif
if K = P then
if State # FAILED then
if PSK exists then — PSK is a preshared key
PMK « PSK
else
PMK <« L(AAA Key, 0, 256)
endif
TSNonce < SNonce
if ANonce # PreANonce then
TPTK <« Calc PTK(PMK, ANonce, TSNonce)
PreANonce < ANonce
endif
if State = MICOK then
PTK « TPTK
UpdatePTK <« I
if UpdatePTK = 1 then
if no GTK then
PRSC « RSC
endif
if MLME-SETKEYS.request(0, TRUE, PRSC, PTK) fails then
invoke MLME-
DEAUTHENTICATE.request
endif
MLME.SETPROTECTION.request(TA, Rx)
endif
if GTK then
if (GTK[N] < Decrypt GTK) succeeds then
if MLME-SETKEY S.request(V, 0, RSC, GTK[N]) fails then
invoke MLME-DEAUTHENTICATE.request

endif
else
State < FAILED
endif
endif
endif
endif

else if KeyData = GTK then
if State = MICOK then
if (GTK[N] < Decrypt GTK) succeeds then
if MLME-SETKEYS.request(N, T, RSC, GTK[N]) fails then
invoke MLME-
DEAUTHENTICATE.request
endif
else

100 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

State < FAILED
endif
else
State <~ FAILED
endif
else if KeyData = STAKey then // STAKey
if State = MICOK then
if (SK <« Decrypt SK) succeeds then
if MLME-SETKEYS.request(0, 1, RSC, SK) fails then
invoke MLME-
DEAUTHENTICATE.request
endif
else
State < FAILED
endif
else
State «— FAILED
endif
endif
if A =1 && State # Failed then
Send EAPOL-Key(0,1,0,0,K,0,TSNonce,0,0,MIC(TPTK),RSNIE,0)
endif
if UpdatePTK = 1 then
MLME.SETPROTECTION.request(TA, Tx_Rx)
endif
if State = MICOK && S =1 then
MLME.SETPROTECTION.request(TA, Tx_Rx)
if IBSS then
keycount++
if keycount = 2 then
802.1X::portValid = TRUE
endif
else
802.1X::portValid = TRUE
endif
endif

Here UNKNOWN, MICOK, and FAILED are values of the variable State used in the Supplicant
pseudo-code. State is used to decide how to do the key processing. MICOK is set when the MIC of
the EAPOL-Key has been checked and is valid. FAILED is used when a failure has occurred in pro-
cessing the EAPOL-Key frame. UNKNOWN is the initial value of the variable State.

When processing 4-Way Handshake Message 3, the GTK is decrypted from the EAPOL-Key frame
and installed. The PTK shall be installed before the GTK.

The Key Replay Counter field used by the Supplicant for EAPOL-Key frames that are sent in
response to a received EAPOL-Key frame shall be the received Key Replay Counter field. Invalid
EAPOL-Key frames such as invalid MIC, GTK without a MIC, etc., shall be ignored.

NOTES

1—TPTK is used to stop attackers changing the PTK on the Supplicant by sending the first message of the 4-
Way Handshake. An attacker can still affect the 4-Way Handshake while the 4-Way Handshake is being carried
out.

2—The PMK will be supplied by the authentication method used with IEEE 802.1X if preshared mode is not
used.

Copyright © 2004 IEEE. Al rights reserved. 101

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

3—A PTK is configured into the encryption/integrity engine depending on the Tx/Rx bit, but if configured, is
always a transmit key. A GTK is configured into the encryption/integrity engine independent of the state of the
Tx/Rx bit, but whether the GTK is used as a transmit key is dependent on the state of the Tx/Rx bit.

— CalcGTK(x) — Generates the GTK.
— DecryptGTK(x) — Decrypt the GTK from the EAPOL-Key frame.

8.5.7 RSNA Authenticator key management state machine

There is one state diagram for the Authenticator. In an ESS, the Authenticator will always be on the AP; and
in an IBSS environment, the Authenticator will be on every STA.

The state diagram shown in parts in Figure 43af through Figure 43ai consists of the following states:

a) The AUTHENTICATION, AUTHENTICATION2, INITPMK, INITPSK, PTKSTART, PTK-
CALCNEGOTIATING, PTKCALCNEGOTIATING2, PTKINITNEGOTIATING, PTKINIT-
DONE, DISCONNECT, DISCONNECTED, and INITIALIZE states. These states handle the ini-
tialization, 4-Way Handshake, tear-down, and general clean-up. These states are per associated
STA.

b) The IDLE, REKEYNEGOTIATING, KEYERROR, and REKEYESTABLISHED states. These
states handle the transfer of the GTK to the associated client. These states are per associated STA.

c¢) The GTK INIT, SETKEYS, and SETKEYSDONE states. These states change the GTK when
required, trigger all the PTK group key state machines, and update the IEEE 802.11 MAC in the
Authenticator’s AP when all STAs have the updated GTK. These states are global to the
Authenticator.

Because there are two GTKs, responsibility for updating these keys is given to the group key state machine
(see Figure 43ah). In other words, this state machine determines which GTK is in use at any time.

When a second STA associates, the group key state machine is already initialized, and a GTK is already
available and in use.

When the GTK is to be updated the variable GTKReKey is set. The SETKEYS state updates the GTK and
triggers all the PTK group key state machines that currently exist—one per associated STA. Each PTK
group key state machine sends the GTK to its STA. When all the STAs have received the GTK (or failed to
receive the key), the SETKEYSDONE state is executed which updates the APs encryption/integrity engine
with the new key.

Both the PTK state machine and the PTK group key state machine use received EAPOL-Key frames as an
event to change states. The PTK state machine only uses EAPOL-Key frames with the Key Type field set to
Pairwise, and the PTK group key state machine only uses EAPOL-Key frames with the Key Type field set to
Group/STAKey.

102 Copyright © 2004 IEEE. All rights reserved.

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS

1 802.1X::keyAvailable

L AuthenticationRequest

AUTHENTICATION

GNoStationst+

PTK=0

802.1X::;portControl = Auto
802.1X::;portEnable = TRUE
AuthenticationRequest= FALSE

IEEE
Std 802.11i-2004

uer v l ReAuthenticationRequest

AUTHENTICATION2

Anonce = Counter++
ReAuthenticationRequest= FALSE

to DISCONNECT

| PSK && PSK &&
802.1X::keyRun 802.1X::keyRun
\i Y
INITPMK INITPSK
PMK= L(AAA Key, 0, PMK= PSK
256)

802.1X::keyAvailable

[TimeoutEvt ¥ y 3
PTKSTART

802.1X::keyAvailable

TimeoutCtr>N
to DISCONNECT

EAPOLKeyReceived &&
IRequest&& K == Pairwise

Send EAPOL (0, 0,1, 0, P, 0, ANonce, 0,0, 0
TimeoutCtr++

EAPOLKeyReceived &&

PTKCALCNEGOTIATING
PTK= Calc PTK ANonce SNonce)

IReques®& K == Pairwise

TimeoutEvt

v MICVerified

PTKCALCNEGOTIATING2
TimeoutCtr = 0

UCT

TimeoutEvt
Y

to KEYERROR

L PTKINITNEGOTIATING

Send EAPOL (1, 1,1, Pair, P, RSC, ANonce, MIC (PTK), RSNIE, GTK [GN])
TimeoutCtr++

EAPOLKeyReceived
&& !Request

&& K == Pairwise
&& MICVerified

PTKINITDONE

if Pair == TRUE
MLME-SetKeys.Request (0, Tx/Rx, PTK)
MLME-SetProtection.Request (TA, Tx, Rx)
if IBSS == TRUE then
keycount+
if keycount== 2 then
802.1X::PortValid = TRUE

802.1X::PortValid = TRUE

else

endif
802.1X:keyDone = TRUE

Figure 43af—Authenticator state machines, part 1

Copyright © 2004 IEEE. All rights reserved.

103

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Dizconnect l l dot1 TRSMAC onfigSalifetime timeout

¥ fom IMITPME, PTESTART
DISCOMNMNECT

DeauthenticationRequest | STADisconnect(]
l Dizconnect = FALSE

L ucT
DISCONNECTED

GMoStationz—
DeauthenticationR equest = FALSE
Ini l T
r
IMITIALIZE
K.eyoount =10

If GUpdateStationkeys == TRUE
GK.eyDoneStation—
Gl pdateStationkeys = FALSE
If Unicast pher supported by Authenticator AMD[ESS OR [[IBSS or
WIhS] and Local A4 > Remote A4]]]
Pair = TRUE
3021 portEnable = FALSE
MLME - D eletek.eys. Request PTE)
302 1= portalid = FALSE
TimeoutCtr =0

Figure 43ag—Authenticator state machines, part 2

Irit

IDLE
GTirmeoutClr =10
ICT
Gl pdateStationkeys
. r
TimeoutE BERETHE GOTIATING
Send EAPOLY, T PaiG RSC GMonce MIC[PTE], GTE[GH])
G T i eoutC e+
. EAPOLKeyReceived &% | FReguest
GTimeoutCle: M &k K == Group &k I fied ucT
KEYEHI%OH REKEYESTABLISHED
GF.epDones tatons— GUpdateStationkeps = FALSE
Gl pdateStationkeys = FALSE GReyDoneStations ™
Disconnedt = TRUE MLME -SetPratection. Fequest{ Ta, Tx_Rx)

Figure 43ah—Authenticator state machines, part 3

104 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

lGlnit
GIK_INIT
GTK[0.N] =0
GM =1
GM =2
GTKIGN] = CalcGTE()

GTEAUthenticator

L

SETEEYSDOME
MLME- Setkeys. RequesfGM, Tw'Rx GTE[GM])

) GTERekey
Gk.eyDoneStations==

SETEEYS

GTERekey = FALSE
SwaplGk. GM)
Gk.enDoneStations = GHoStations
GTKIGN] = CalcaTK() GTKReKey
Far geach 5TA

GUpdateStationteys = TRUE

F 1

Figure 43ai—Authenticator state machines, part 4

8.5.7.1 Authenticator state machine states

8.5.7.1.1 Authenticator state machine: 4-Way Handshake (per STA)

The following list summarizes the states the Authenticator state machine uses to support the 4-Way
Handshake:

AUTHENTICATION: This state is entered when an AuthenticationRequest is sent from the man-
agement entity to authenticate a BSSID.

AUTHENTICATION?2: This state is entered from the AUTHENTICATION state or from the
PTKINITDONE state.

DISCONNECT: This state is entered if an EAPOL-Key frame is received and fails its MIC check.
It sends a Deauthentication message to the STA and enters the INITIALIZE state.

DISCONNECTED: This state is entered when Disassociation or Deauthentication messages are
received.

INITIALIZE: This state is entered from the DISCONNECTED state, when a deauthentication
request event occurs, or when the station initializes. The state initializes the key state variables.

INITPMK: This state is entered when the IEEE 802.1X backend AS completes successfully. If a
PMK is supplied, it goes to the PTKSTART state; otherwise, it goes to the DISCONNECTED state.

INITPSK: This state is entered when a PSK is configured.

PTKCALCNEGOTIATING: This state is entered when the second EAPOL-Key frame for the
4-Way Handshake is received with the key type of Pairwise.

Copyright © 2004 IEEE. Al rights reserved. 105

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

PTKCALNEGOTIATING?2: This state is entered when the MIC for the second EAPOL-Key
frame of the 4-Way Handshake is verified.

PTKINITNEGOTIATING: This state is entered when the MIC for the second EAPOL-Key frame
for the 4-Way Handshake is verified. When Message 3 of the 4-Way Handshake is sent in state
PTKINITNEGOTIATING, the encrypted GTK shall be sent at the end of the data field, and the
GTK length is put in the GTK Length field.

PTKINITDONE: This state is entered when the last EAPOL-Key frame for the 4-Way Handshake
is received with the key type of Pairwise. This state may call SetPTK; if this call fails, the AP
should detect and recover from the situation, for example, by doing a disconnect event for this
association.

PTKSTART: This state is entered from INITPMK or INITPSK to start the 4-Way Handshake or if
no response to the 4-Way Handshake occurs.

8.5.7.1.2 Authenticator state machine: Group Key Handshake (per STA)

The following list summarizes the states the Authenticator state machine uses to support the Group Key
Handshake:

IDLE: This state is entered when no Group Key Handshake is occurring.

KEYERROR: This state is entered if the EAPOL-Key acknowledgment for the Group Key Hand-
shake is not received.

REKEYESTABLISHED: This state is entered when an EAPOL-Key frame is received from the
Supplicant with the Key Type subfield set to Group/STAKey.

REKEYNEGOTIATING: This state is entered when the GTK is to be sent to the Supplicant.
NOTE—The TxRx flag for sending a GTK is always the opposite of whether the pairwise key is used for data

encryption/integrity or not. If a pairwise key is used for encryption/integrity, then the STA never transmits with
the GTK; otherwise, the STA uses the GTK for transmit.

8.5.7.1.3 Authenticator state machine: Group Key Handshake (global)

The following list summarizes the states the Authenticator state machine uses to coordinate a group key
update of all STAs:

GTK_INIT: This state is entered on system initialization.
SETKEYS: This state is entered if the GTK is to be updated on all Supplicants.
SETKEYSDONE: This state is entered if the GTK has been updated on all Supplicants.

NOTE—SETKEYSDONE calls SetGTK to set the GTK for all associated STA. If this fails, all communication
via this key will fail, and the AP needs to detect and recover from this situation.

8.5.7.2 Authenticator state machine variables

The following list summarizes the variables used by the Authenticator state machine:

106

AuthenticationRequest — This variable is set to TRUE if the STA’s IEEE 802.11 management entity
wants an association to be authenticated. This can be set when the STA associates or at other times.

ReAuthenticationRequest — This variable is set to TRUE if the IEEE 802.1X Authenticator received
an eapStart or 802.1X::reAuthenticate is set.

DeauthenticationRequest — This variable is set to TRUE if a Disassociation or Deauthentication
message is received.

Disconnect — This variable is set to TRUE when the STA should initiate a deauthentication.

EAPOLKeyReceived — This variable is set to TRUE when an EAPOL-Key frame is received.
EAPOL-Key frames that are received in response to an EAPOL-Key frame sent by the Authentica-
tor must contain the same Key Replay Counter field value as the Key Replay Counter field in the

Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

transmitted message. EAPOL-Key frames that contain different Key Replay Counter field values
should be discarded. An EAPOL-Key frame that is sent by the Supplicant in response to an EAPOL-
Key frame from the Authenticator must not have the Ack bit set. EAPOL-Key frames sent by the
Supplicant not in response to an EAPOL-Key frame from the Authenticator must have the Request
bit set.

NOTES
1—EAPOL-Key frames with a key type of Pairwise and a nonzero key index should be ignored.
2—EAPOL-Key frames with a key type of Group/STAKey and an invalid key index should be ignored.

3—When an EAPOL-Key frame with the Ack bit cleared is received, then it is expected as a reply to a message
that the Authenticator sent, and the replay counter is checked against the replay counter used in the sent
EAPOL-Key frame. When an EAPOL-Key frame with the Request bit set is received, then a replay counter for
these messages is used that is a different replay counter than the replay counter used for sending messages to the
Supplicant.

— GTimeoutCtr — This variable maintains the count of EAPOL-Key receive timeouts for the Group
Key Handshake. It is incremented each time a timeout occurs on EAPIOL-Key receive event and is
initialized to 0. Annex D details the timeout values. The Key Replay Counter field value for the
EAPOL-Key frame shall be incremented on each transmission of the EAPOL-Key frame.

— GInit — This variable is used to initialize the group key state machine. This is a group variable.
— Init — This variable is used to initialize per-STA state machine
— TimeoutEvt — This variable is set to TRUE if the EAPOL-Key frame sent out fails to obtain a

response from the Supplicant. The variable may be set by management action or set by the operation
of a timeout while in the PTKSTART and REKEYNEGOTIATING states.

— TimeoutCtr — This variable maintains the count of EAPOL-Key receive timeouts. It is incremented
each time a timeout occurs on EAPOL-Key receive event and is initialized to 0. Annex D contains
details of the timeout values. The Key Replay Counter field value for the EAPOL-Key frame shall
be incremented on each transmission of the EAPOL-Key frame.

— MICVerified — This variable is set to TRUE if the MIC on the received EAPOL-Key frame is veri-
fied and is correct. Any EAPOL-Key frames with an invalid MIC will be dropped and ignored.

— GTKAuthenticator — This variable is set to TRUE if the Authenticator is on an AP or it is the desig-
nated Authenticator for an IBSS.

— GKeyDoneStations — Count of number of STAs left to have their GTK updated. This is a global

variable.

— GTKRekey — This variable is set to TRUE when a Group Key Handshake is required. This is a global
variable.

— GUpdateStationKeys — This variable is set to TRUE when a new GTK is available to be sent to
Supplicants.

— GNoStations — This variable counts the number of Authenticators so it is known how many
Supplicants need to be sent the GTK. This is a global variable.

— Counter — This variable is the global STA key counter.
— ANonce — This variable holds the current nonce to be used if the STA is an Authenticator.

— GN, GM — These are the current key indices for GTKs. Swap(GM, GN) means that the global key
index in GN is swapped with the global key index in GM, so now GM and GN are reversed.

— PTK —This variable is the current PTK.

— GTK][] — This variable is the current GTKs for each GTK index.

— PMK — This variable is the buffer holding the current PMK.

— 802.1X::XXX - This variable is the IEEE 802.1X state variable XXX

— keycount — This variable is used in IBSS mode to decide when all the keys have been delivered and
an IBSS link is secure.

Copyright © 2004 IEEE. Al rights reserved. 107

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

8.5.7.3 Authenticator state machine procedures

The following list summarizes the procedures used by the Authenticator state machine:
— STADisconnect() — Execution of this procedure deauthenticates the STA.
— CalcGTK(x) — Generates the GTK.
— MIC(x) — Computes a MIC over the plaintext data.

8.5.8 Nonce generation (informative)

All STAs contain a global key counter, which is 256 bits in size. It should be initialized at system boot-up
time to a fresh cryptographic-quality random number. Refer to H.6 on random number generation. It is rec-
ommended that the counter value is initialized to the following:

PRF-256(Random number, “Init Counter”, Local MAC Address || Time)
The local MAC address should be AA on the Authenticator and SPA on the Supplicant.

The random number is 256 bits in size. Time should be the current time [from Network Time Protocol
(NTP) or another time in NTP format] whenever possible. This initialization is to ensure that different initial
key counter values occur across system restarts regardless of whether a real-time clock is available. The key
counter must be incremented (all 256 bits) each time a value is used as an IV. The key counter must not be
allowed to wrap to the initialization value.

8.6 Mapping EAPOL keys to IEEE 802.11 keys
8.6.1 Mapping PTK to TKIP keys
See 8.5.1.2 for the definition of the EAPOL temporal key derived from PTK.

A STA shall use bits 0-127 of the temporal key as its input to the TKIP Phase 1 and Phase 2 mixing
functions.

A STA shall use bits 128—191 of the temporal key as the Michael key for MSDUSs from the Authenticator’s
STA to the Supplicant’s STA or from the initiating STA to the peer STA for STAKeys.

A STA shall use bits 192-255 of the temporal key as the Michael key for MSDUs from the Supplicant’s
STA to the Authenticator’s STA or from the peer STA to the initiating STA for STAKeys.

8.6.2 Mapping GTK to TKIP keys
See 8.5.1.3 for the definition of the EAPOL temporal key derived from GTK.

A STA shall use bits 0-127 of the temporal key as the input to the TKIP Phase 1 and Phase 2 mixing
functions.

A STA shall use bits 128—191 of the temporal key as the Michael key for MSDUs from the Authenticator’s
STA to the Supplicant’s STA or from the initiating STA to the peer STA for STAKeys.

A STA shall use bits 192-255 of the temporal key as the Michael key for MSDUs from the Supplicant’s STA
to the Authenticator’s STA or from the peer STA to the initiating STA for STAKeys.

108 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

8.6.3 Mapping PTK to CCMP keys

See 8.5.1.2 for the definition of the EAPOL temporal key derived from PTK.
A STA shall use the temporal key as the CCMP key for MSDUs between the two communicating STAs.
8.6.4 Mapping GTK to CCMP keys

See 8.5.1.3 for the definition of the EAPOL temporal key derived from GTK.
A STA shall use the temporal key as the CCMP key.

8.6.5 Mapping GTK to WEP-40 keys

See 8.5.1.3 for the definition of the EAPOL temporal key derived from GTK.
A STA shall use bits 0-39 of the temporal key as the WEP-40 key.

8.6.6 Mapping GTK to WEP-104 keys

See 8.5.1.3 for the definition of the EAPOL temporal key derived from GTK.

A STA shall use bits 0-103 of the temporal key as the WEP-104 key.

8.7 Per-frame pseudo-code
8.7.1 WEP frame pseudo-code

An MPDU of type Data with the Protected Frame subfield of the Frame Control field equal to 1 is called a
WEP MPDU. Other MPDUs of type Data are called non-WEP MPDU .

A STA shall not transmit WEP-encapsulated MPDUs when value of the MIB variable
dotllPrivacyInvoked is set to FALSE. This MIB variable does not affect MPDU or MAC manage-
ment protocol data unit (MMPDU) reception.

if dot11PrivacyInvoked is “false” then
the MPDU is transmitted without WEP encapsulation
else
if (the MPDU has an individual RA and there is an entry in dot11WEPKeyMappings for
that RA) then
if that entry has WEPOn set to “false” then
the MPDU is transmitted without WEP encapsulation
else
if that entry contains a key that is null then
discard the MPDU’s entire MSDU and generate an MA-UNITDATA-STA-
TUS.indication primitive to notify LLC that the MSDU was undeliverable
due to a null WEP key
else
encrypt the MPDU using that entry’s key, setting the Key ID subfield of the IV
field to zero
endif
endif
else

Copyright © 2004 IEEE. Al rights reserved. 109

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

if (the MPDU has a group RA and the Privacy subfield of the Capability Information field
in this BSS is set to 0) then
the MPDU is transmitted without WEP encapsulation

else
if dot11WEPDefaultKeys[dotl11WEPDefaultKeyID]is null then
discard the MPDU’s entire MSDU and generate an MA-UNITDATA-STA-
TUS.indication primitive to notify LLC that the MSDU was undeliverable
due to a null WEP key
else
WEP-encapsulate the MPDU using the key dotllWEPDefaultKeys-
[dot11WEPDefaultKeyID], setting the Key ID subfield of the IV field to
dotllWEPDefaultKeyID
endif
endif
endif

endif

When the boolean attribute aExcludeUnencrypted is set to TRUE, non-WEP MPDUs shall not be indicated
at the MAC service interface, and only MSDUs successfully reassembled from successfully decrypted
MPDU s shall be indicated at the MAC service interface. When receiving a frame of type Data, the values of
dotllPrivacyOptionImplemented, dotllWEPKeyMappings, dotllWEPDefaultKeys,
dotl11WEPDefaultKeyID, and aExcludeUnencrypted in effect at the time the PHY-
RXSTART.indication primitive is received by the MAC shall be used according to the following decision
tree:

if the Protected Frame subfield of the Frame Control Field is zero then
if aExcludeUnencrypted is “true” then
discard the frame Dbody without indication to LLC and increment
dotllWEPExcludedCount
else
receive the frame without WEP decapsulation
endif
else
ifdot11PrivacyOptionImplemented is “true” then
if (the MPDU has individual RA and there is an entry in dot11WEPKeyMappings
matching the MPDU’s TA) then
if that entry has WEPOn set to “false” then
discard the frame body and increment dot11WEPUndecryptableCount
else
if that entry contains a key that is null then
discard the frame body and increment dotl11WEPUndecryptable-
Count
else
WEP-decapsulate with that key, incrementing dot11WEPICVError-—
Count if the ICV check fails
endif
endif
else
if dot11WEPDefaultKeys[Key ID] is null then
discard the frame body and increment dotl 1 WEPUndecryptableCount
else
WEP-decapsulate with dot11WEPDefaultKeys[Key ID], incrementing
dotl1WEPICVErrorCount if the ICV check fails
endif
endif

110 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004
else
discard the frame body and increment dot1 1WEPUndecryptableCount
endif
endif

8.7.2 RSNA frame pseudo-code

STAs transmit protected MSDUs to a RA when temporal keys are configured and an MLME.SETPROTEC-
TION.request primitive has been invoked for transmit to that RA. STAs expect to receive protected MSDUs
from a TA when temporal keys are configured and an MLME.SETPROTECTION.request primitive has
been invoked for receive from that TA. MSDUs that do not match these conditions are sent in the clear and
are received in the clear.

8.7.2.1 Per-MSDU Tx pseudo-code

if dot11RSNAEnabled = true then
if MSDU has an individual RA and Protection for RA is off for Tx then
transmit the MSDU without protections
else if (MPDU has individual RA and Pairwise key exists for the MPDU’s RA) or (MPDU has
a multicast or broadcast RA and network type is IBSS and IBSS GTK exists for MPDU’s
TA) then
/I If we find a suitable Pairwise or GTK for the mode we are in...
if key is a null key then
discard the entire MSDU and generate an MA-UNITDATA-STATUS.indication
primitive to notify LLC that the MSDU was undeliverable due to a null key
else
// Note that it is assumed that no entry will be in the key
// mapping table of a cipher type that is unsupported.
Set the Key ID subfield of the IV field to zero.
if cipher type of entry is AES-CCM then
Transmit the MSDU, to be protected after fragmentation using AES-CCM
else if cipher type of entry is TKIP then
Compute MIC using Michael algorithm and entry’s Tx MIC key.
Append MIC to MSDU
Transmit the MSDU, to be protected with TKIP
else if cipher type of entry is WEP then
Transmit the MSDU, to be protected with WEP
endif
endif
else // Else we didn’t find a key but we are protected, so handle the default key case or discard
if GTK entry for Key ID contains null then
discard the MSDU and generate an MA-UNITDATA-STATUS.indication primitive
to notify LLC that the entire MSDU was undeliverable due to a null GTK
else if GTK entry for Key ID is not null then
Set the Key ID subfield of the IV field to the Key ID.
if MPDU has an individual RA and cipher type of entry is not TKIP then
discard the entire MSDU and generate an MA-UNITDATA-STATUS.indica-
tion primitive to notify LLC that the MSDU was undeliverable due to a null
key
else if cipher type of entry is AES-CCM then
Transmit the MSDU, to be protected after fragmentation using AES-CCM
else if cipher type of entry is TKIP then
Compute MIC using Michael algorithm and entry’s Tx MIC key.
Append MIC to MSDU
Transmit the MSDU, to be protected with TKIP

Copyright © 2004 IEEE. Al rights reserved. 111

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

else if cipher type of entry is WEP then
Transmit the MSDU, to be protected with WEP
endif
endif
endif
endif

8.7.2.2 Per-MPDU Tx pseudo-code

if dot11RSNAEnabled= TRUE then
if MPDU is member of an MSDU that is to be transmitted without protections
transmit the MPDU without protections
else if MSDU that MPDU is a member of is to be protected using AES-CCM
Protect the MPDU using entry’s key and AES-CCM
Transmit the MPDU
else if MSDU that MPDU is a member of is to be protected using TKIP
Protect the MPDU using TKIP encryption
Transmit the MPDU
else if MSDU that MPDU is a member of is to be protected using WEP
Encrypt the MPDU using entry’s key and WEP
Transmit the MPDU
else
// should not arrive here
endif
endif

8.7.2.3 Per-MPDU Rx pseudo-code

if dot11RSNAEnabled= TRUE then
if the Protected Frame subfield of the Frame Control Field is zero then
if Protection for TA is off for Rx then
Receive the unencrypted MPDU without protections
else
discard the frame body without indication to LLC and increment
dotllWEPExcludedCount
endif
else if Protection is true for TA then
if (MPDU has individual RA and Pairwise key exists for the MPDU’s TA) or (MPDU
has a broadcast/multicast RA and network type is IBSS and IBSS GTK exists for
MPDU’s RA)) then
if key is null then
discard the frame body and increment dot11WEPUndecryptableCount
else if entry has an AES-CCM key then
decrypt frame using AES-CCM key
discard the frame if the integrity check fails and increment dot11RSNA-
StatsCCMPDecryptErrors
else if entry has a TKIP key then
prepare a temporal key from the TA, TKIP key and PN
decrypt the frame using RC4
discard the frame if the ICV fails and increment dot11RSNAStatsTKIP-
LocalMicFailures
else if entry has a WEP key then
decrypt the frame using WEP decryption
discard the frame if the ICV fails and increment dot 1 1WEPICVErrorCount
else

112 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

discard the frame body and increment dot11WEPUndecryptableCount
endif
else if GTK for the Key ID does not exist then
discard the frame body and increment dot 11WEPUndecryptableCount
else if GTK for the Key ID is null then
discard the frame body and increment dot11WEPUndecryptableCount
else if the GTK for the Key ID is a CCM key then
decrypt frame using AES-CCM key
discard the frame if the integrity check fails and increment dot 11RSNAStats-
CCMPDecryptErrors
else if the GTK for the Key ID is a TKIP key then
prepare a temporal key from the TA, TKIP key and PN
decrypt the frame using RC4
discard the frame if the ICV fails and increment dot11RSNAStatsTKIPICV-
Errors
else if the GTK for the Key ID is a WEP key then
decrypt the frame using WEP decryption
discard the frame if the ICV fails and increment dot 1 1WEPICVErrorCount
endif
else
MLME-PROTECTEDFRAMEDROPPED.indication
discard the frame body and increment dot11WEPUndecryptableCount
endif
endif

8.7.2.4 Per-MSDU Rx pseudo-code

if dot11RSNAEnabled= TRUE then
if the frame was not protected then
Receive the MSDU unprotected
Make MSDU available to higher layers
else// Have a protected MSDU
if Pairwise key is an AES-CCM key then
Accept the MSDU if its MPDUs had sequential PNs (or if it consists of only one
MPDU), otherwise discard the MSDU as a replay attack and increment
dotl IRSNAStatsCCMPReplays
Make MSDU available to higher layers
else if Pairwise key is a TKIP key then
Compute the MIC using the Michael algorithm
Compare the received MIC against the computed MIC
discard the frame if the MIC fails increment dotl1RSNAStatsTKIPLocalMIC-
Failures and invoke countermeasures if appropriate
compare TSC against replay counter, if replay check fails increment dotl IRSNA-
StatsTKIPReplays
otherwise accept the MSDU
Make MSDU available to higher layers
else if dot 1 1WEPKeyMappings has a WEP key then
Accept the MSDU since the decryption took place at the MPDU
Make MSDU available to higher layers
endif
endif
endif

End of changes to Clause 8.

Copyright © 2004 IEEE. Al rights reserved. 113

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

10. Layer management

10.3 MLME SAP interface

10.3.2 Scan

10.3.2.2 MLME-SCAN.confirm

10.3.2.2.2 Semantics of the service primitive

Insert the following elements at the end of the untitled table listing the elements of BSSDescription in
10.3.2.2.2:

Name Type Valid range Description
RSN RSN information As defined in A description of the cipher suites and AKM
element frame format suites supported in the BSS.

10.3.6 Associate

10.3.6.1 MLME-ASSOCIATE.request

10.3.6.1.2 Semantics of the service primitive
Change the following primitive parameter list in 10.3.6.1.2:

MLME-ASSOCIATE.request(
PeerSTAAddress,
AssociateFailureTimeout,
CapabilityInformation,
ListenInterval,
Supported Channels
RSN

)

Insert the following row at the end of the untitled table defining the primitive parameters in 10.3.6.1.2:

Name Type Valid range Description
RSN RSN information As defined in A description of the cipher suites and AKM
element frame format suites supported in the BSS.

10.3.6.3 MLME-ASSOCIATE.indication

10.3.6.3.2 Semantics of the service primitive
Change the following primitive parameter list in 10.3.6.3.2:
MLME-ASSOCIATE.indication(

PeerSTAAddress,
RSN

)

114 Copyright © 2004 IEEE. All rights reserved.

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS

EEE

Std 802.11i-2004

Insert the following row at the end of the untitled table defining the primitive parameters in 10.3.6.3.2:

Name

Type

Valid range

Description

RSN

RSN information
element

As defined in
frame format

A description of the cipher suites and AKM
suites supported in the BSS. Only one pair-
wise cipher suite and only one authenticated
key suite are allowed in the RSN information
element.

10.3.7 Reassociate

10.3.7.1 MLME-REASSOCIATE.request

10.3.7.1.2 Semantics of the service primitive

Change the following primitive parameter list in 10.3.7.1.2:

MLME-REASSOCIATE.request(

NewAPAddress,
ReassociateFailureTimeout,
CapabilityInformation,
ListenInterval,

Supported Channels,

RSN
)

Insert the following row at the end of the untitled table defining the primitive parameters in 10.3.7.1.2:

Name

Type

Valid range

Description

RSN

RSN information
element

As defined in
frame format

A description of the cipher suites and AKM
suites supported in the BSS.

10.3.7.3 MLME-REASSOCIATE.indication

10.3.7.3.2 Semantics of the service primitive

Change the following primitive parameter list in 10.3.7.3.2:

MLME-REASSOCIATE.indication(

PeerSTAAddress,
RSN
)
Insert the following row at the end of the untitled table defining the primitive parameters in 10.3.7.3.2:
Name Type Valid range Description
RSN RSN information As defined in A description of the cipher suites and AKM
clement frame format suites supported in the BSS.

Copyright © 2004 IEEE. All rights reserved.

115

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

After 10.3.16.2.4, insert 10.3.17 through 10.3.23.1.4:

10.3.17 SetKeys

10.3.17.1 MLME-SETKEYS.request

10.3.17.1.1 Function

This primitive causes the keys identified in the parameters of the primitive to be set in the MAC and enabled

for use.
10.3.17.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-SETKEY S.request(

Keylist
)
Name Type Valid range Description
Keylist A set of N/A The list of keys to be used by the MAC.
SetKeyDescriptors

Each SetKeyDescriptor consists of the following elements:

Name Type Valid range Description

Key Bit string N/A The temporal key value

Length Integer N/A The number of bits in the Key to be

used.

Key ID Integer 0-3 Key identifier

Key Type Integer Group, Pairwise, Defines whether this key is a group key,
STAKey pairwise key, or STAKey.

Address MACAddress Any valid This parameter is valid only when the
individual MAC Key Type value is Pairwise, when the
address Key Type value is Group and the STA is

in IBSS, or when the Key Type value is
STAKey.

Receive Sequence Count 8 octets N/A Value the receive sequence counter(s)

should be initialized to

Authenticator/Supplicant Boolean True, false Whether the key is configured by the

or Initiator/Peer Authenticator or Supplicant; true indi-

cates Authenticator or Initiator.

Cipher Suite Selector 4 octets As defined in the The cipher suite required for this
RSN information association.
element format

116

Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

10.3.17.1.3 When generated

This primitive is generated by the SME at any time when one or more keys are to be set in the MAC.
10.3.17.1.4 Effect of receipt

Receipt of this primitive causes the MAC to set the appropriate keys and to begin using them for future MA-
UNITDATA.request and MA-UNITDATA.indication primitives provided the MLME-SETPROTEC-
TION.request primitive has been issued.

10.3.17.2 MLME-SETKEYS.confirm

10.3.17.2.1 Function

This primitive confirms that the action of the associated MLME-SETKEYS.request primitive has been
completed.

10.3.17.2.2 Semantics of the service primitive
This primitive has no parameters.
10.3.17.2.3 When generated

This primitive is generated by the MAC in response to receipt of a MLME-SETKEYS.request primitive.
This primitive is issued when the action requested has been completed.

10.3.17.2.4 Effect of receipt

The SME is notified that the requested action of the MLME-SETKEY S.request primitive is completed.
10.3.18 DeleteKeys

10.3.18.1 MLME-DELETEKEYS.request

10.3.18.1.1 Function

This primitive causes the keys identified in the parameters of the primitive to be deleted from the MAC and
thus disabled for use.

10.3.18.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-DELETEKEYS.request(

Keylist
)
Name Type Valid range Description
Keylist A set of N/A The list of keys to be deleted from the
DeleteKeyDescriptors MAC.

Copyright © 2004 IEEE. Al rights reserved. 117

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Each DeleteKeyDescriptor consists of the following elements:

Name Type Valid range Description
Key ID Integer N/A Key identifier.
Key Type Integer Group, Pairwise, Defines whether this key is a group key,
STAKey pairwise key, or STAKey.
Address MAC Address Any valid individ- This parameter is valid only when the
ual MAC address Key Type value is Pairwise, or when the
Key Type value is Group and is from an
IBSS STA, or when the Key Type value
is STAKey.

10.3.18.1.3 When generated

This primitive is generated by the SME at any time when keys for a security association are to be deleted in
the MAC.

10.3.18.1.4 Effect of receipt

Receipt of this primitive causes the MAC to delete the temporal keys identified by the Keylist Address,
including Group, Pairwise and STAKey, and to cease using them.

10.3.18.2 MLME-DELETEKEYS.confirm
10.3.18.2.1 Function

This primitive confirms that the action of the associated MLME-DELETEKEY S.request primitive has been
completed.

10.3.18.2.2 Semantics of the service primitive
This primitive has no parameters.
10.3.18.2.3 When generated

This primitive is generated by the MAC in response to receipt of a MLME-DELETEKEY S.request primi-
tive. This primitive is issued when the action requested has been completed.

10.3.18.2.4 Effect of receipt

The SME is notified that the requested action of the MLME-DELETEKEY S.request primitive is completed.
10.3.19 MIC (Michael) failure event

10.3.19.1 MLME-MICHAELMICFAILURE.indication

10.3.19.1.1 Function

This primitive reports that a MIC failure event was detected.

118 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

10.3.19.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MICHAELMICFAILURE.indication (

Count,
Address,
Key Type,
Key ID,
TSC
)
Name Type Valid range Description
Count Integer lor2 The current number of MIC failure
events.
Address MACAddress Any valid individ- The source MAC address of the frame.
ual MAC address
Key Type Integer Group, Pairwise, The key type that the receive frame
STAKey used.
Key ID Integer 0-3 Key identifier.
TSC 6 octets N/A The TSC value of the frame that gener-
ated the MIC failure.

10.3.19.1.3 When generated

This primitive is generated by the MAC when it has detected a MIC failure.
10.3.19.1.4 Effect of receipt

The SME is notified that the MAC has detected a MIC failure.

10.3.20 EAPOL

10.3.20.1 MLME-EAPOL.request

10.3.20.1.1 Function

This primitive is used to transfer a Michael MIC Failure Report frame.
10.3.20.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-EAPOL.request (
Source Address,
Destination Address,
Data

)

Copyright © 2004 IEEE. Al rights reserved. 119

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS
Name Type Valid range Description
Source Address MACAddress N/A The MAC sublayer address from which the
EAPOL-Key frame is being sent.
Destination MACAddress N/A The MAC sublayer entity address to which
Address the EAPOL-Key frame is being sent.
Data IEEE 802.1X N/A The EAPOL-Key frame to be transmitted.

EAPOL-Key frame

10.3.20.1.3 When generated

This primitive is generated by the SME when the SME has a Michael MIC Failure Report to send.
10.3.20.1.4 Effect of receipt

The MAC sends this EAPOL-Key frame.

10.3.20.2 MLME-EAPOL.confirm

10.3.20.2.1 Function

This primitive indicates that this EAPOL-Key frame has been acknowledged by the IEEE 802.11 MAC.
10.3.20.2.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-EAPOL.confirm (

ResultCode
)
Name Type Valid range Description
ResultCode Enumeration SUCCESS, Indicates whether the EAPOL-Key frame
TIMEOUT has been acknowledged by the target STA.

10.3.20.2.3 When generated

This primitive is generated by the MAC as a result of an MLME-EAPOL.request being generated to send an
EAPOL-Key frame.

10.3.20.2.4 Effect of receipt

The SME is always notified whether this EAPOL-Key frame has been acknowledged by the IEEE 802.11
MAC.

120 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

10.3.21 MLME-STAKEYESTABLISHED

10.3.21.1 MLME-STAKEYESTABLISHED.indication
10.3.21.1.1 Function

This primitive notifies the SME that a STAKey is required.

10.3.21.1.2 Semantics of the service primitive

This primitive has two parameters, the MAC addresses of the two STAs.

The primitive parameters are as follows:

MLME-STAKEYESTABLISHED.indication (
Addressl,
Address2

)

Name Type Valid range Description

Address1 MACAddress Any valid individual | MAC address of initiating STA.
MAC address

Address2 MACAddress Any valid individual | MAC address of peer STA.
MAC address

10.3.21.1.3 When generated
This primitive is generated by the MAC when a STAKey is required.
10.3.21.1.4 Effect of receipt

The SME is notified that a STAKey is required, is made aware of the two STA MAC addresses involved,
and can then send STAKey Handshake messages to each STA.

10.3.22 SetProtection
10.3.22.1 MLME-SETPROTECTION.request
10.3.22.1.1 Function

This primitive indicates whether protection is required for frames sent to and received from the indicated
MAC address.

10.3.22.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-SETPROTECTION.request(
Protectlist

)

Copyright © 2004 IEEE. Al rights reserved. 121

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS
Name Type Valid range Description
Protectlist A set of protection N/A The list of how each key is being used
elements currently.

Each Protectlist consists of the following elements:

Name Type Valid range Description

Address MACAddress Any valid individ- This parameter is valid only when the Key
ual MAC address Type value is Pairwise or STAKey or
when the Key Type value is Group and is
from an IBSS STA.

ProtectType Enumeration None, Rx, Tx, The protection value for this MAC.
Rx Tx

Key Type Integer Group, Pairwise, or | Defines whether this key is a group key,
STAKey pairwise key, or STAkey.

10.3.22.1.3 When generated

This primitive is generated by the SME when protection is required for frames sent to and received from the
indicated MAC address.

10.3.22.1.4 Effect of receipt

Receipt of this primitive causes the MAC to set the protection and to protect data frames as indicated in the
ProtectType element of the Protectlist parameter:

— None: Specifies that data frames neither from the MAC address nor to the MAC address shall be
protected.

— Rx: Specifies that data frames from MAC address shall be protected.
— Tx: Specifies that data frames to MAC address shall be protected.
— Rx_Tx: Specifies that data frames to and from MAC address shall be protected.

Once it is specified that a data frame is protected to or from a MAC address, this shall be reset by the
MLME-SETPROTECTION.request primitive. The MLME-SETPROTECTION.request primitive deletes
the state by specifying None.

10.3.22.2 MLME-SETPROTECTION.confirm

10.3.22.2.1 Function

This primitive indicates that the frame protection request is completed.

10.3.22.2.2 Semantics of the service primitive

There are no parameters for this primitive.

10.3.22.2.3 When generated

This primitive is generated by the MAC when the protection request is complete.

122 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

10.3.22.2.4 Effect of receipt

The SME is notified that the protection request is complete.

10.3.23 MLME-PROTECTEDFRAMEDROPPED

10.3.23.1 MLME- PROTECTEDFRAMEDROPPED.indication

10.3.23.1.1 Function

This primitive notifies the SME that a frame has been dropped because a temporal key was unavailable.
10.3.23.1.2 Semantics of the service primitive

This primitive has two parameters, the MAC addresses of the two STAs.

The primitive parameters are as follows:

MLME- PROTECTEDFRAMEDROPPED.indication (
Addressl,
Address2

)

Name Type Valid range Description

Address1 MACAddress Any valid individual | MAC address of SA.
MAC address

Address2 MACAddress Any valid individual | MAC address of RA.
MAC address

10.3.23.1.3 When generated

This primitive is generated by the MAC when a frame is dropped because no temporal key is available for
the frame.

10.3.23.1.4 Effect of receipt

The SME is notified that a frame was dropped. The SME can use this information in an IBSS to initiate a
security association to the peer STA.

End of changes to Clause 10.
11. MAC sublayer management entity
Replace 11.3 and 11.4 in their entirety with the following text:

11.3 Association and reassociation

This subclause describes the procedures used for IEEE 802.11 authentication and deauthentication. The
states used in this description are those defined in 5.5.

Copyright © 2004 IEEE. Al rights reserved. 123

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

11.3.1 Authentication—originating STA

Upon receipt of an MLME-AUTHENTICATE.request primitive, the originating STA shall authenticate
with the indicated STA using the following procedure:

a) Inan ESS, or optionally in an IBSS, the STA shall execute the authentication mechanism described
in 8.2.2.2.

b) If the authentication was successful, the state variable for the indicated STA shall be set to State 2.

c¢) The STA shall issue an MLME-AUTHENTICATE.confirm primitive to inform the SME of the
result of the authentication.

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using MLME-DELETEKEYS.request primitive (see 8.4.10) before invoking MLME-AUTHENTI-
CATE.request primitive.

11.3.2 Authentication—destination STA

Upon receipt of an Authentication frame with authentication transaction sequence number equal to 1, the
destination STA shall authenticate with the indicated STA using the following procedure:

a) The STA shall execute the authentication mechanism described in 8.2.2.2.

b) The STA shall issue an MLME-AUTHENTICATE.indication primitive to inform the SME of the
authentication.

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using the MLME-DELETEKEY S.request primitive (see 8.4.10) upon receiving a MLME-AUTHENTI-
CATE.indication primitive.

If the STA is in an IBSS, if the SME decides to initiate an RSNA, and if the SME does not know the security
policy of the peer, it may issue a unicast Probe Request frame to the peer by invoking an MLME-
SCAN.request to discover the peer’s security policy.

11.3.3 Deauthentication—originating STA

Upon receipt of an MLME-DEAUTHENTICATE.request primitive, the originating STA shall deauthenti-
cate with the indicated STA using the following procedure:

a) Ifthe state variable for the indicated STA is in State 2 or State 3, the STA shall send a Deauthentica-
tion frame to the indicated STA.

b) The state variable for the indicated STA shall be set to State 1.

c¢) The STA shall issue an MLME-DEAUTHENTICATE.confirm primitive to inform the SME of the
completion of the deauthentication.

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using the MLME-DELETEKEY S.request primitive (see 8.4.10) and by invoking MLME-SETPROTEC-
TION.request(None) before invoking the MLME-DEAUTHENTICATE.request primitive.

11.3.4 Deauthentication—destination STA

Upon receipt of a Deauthentication frame, the destination STA shall deauthenticate with the indicated STA
using the following procedure:

a) The state variable for the indicated STA shall be set to State 1.

b) The STA shall issue an MLME-DEAUTHENTICATE.indication primitive to inform the SME of the
deauthentication.

124 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using the MLME-DELETEKEY S.request primitive (see 8.4.10) and by invoking MLME-SETPROTEC-
TION.request(None) upon receiving an MLME-DEAUTHENTICATE.indication primitive.

11.4 Association, reassociation, and disassociation

This subclause defines how a STA associates and reassociates with an AP and how it disassociates from it.
The states used in this description are those defined in 5.5.

11.4.1 STA association procedures

Upon receipt of an MLME-ASSOCIATE.request primitive, a STA shall associate with an AP via the follow-
ing procedure:

a) The STA shall transmit an Association Request frame to an AP with which that STA is authenti-
cated. If the MLME-ASSOCIATE.request primitive contained an RSN information element with
only one pairwise cipher suite and only one authenticated key suite, this RSN information element
shall be included in the Association Request frame.

b) If an Association Response frame is received with a status value of “successful,” the STA is now
associated with the AP. The state variable shall be set to State 3, and the MLME shall issue an
MLME-ASSOCIATE.confirm primitive indicating the successful completion of the operation.

c) Ifan Association Response frame is received with a status value other than “successful” or the Asso-
ciateFailureTimeout expires, the STA is not associated with the AP. The MLME shall issue an
MLME-ASSOCIATE.confirm primitive indicating the failure of the operation.

d) The SME shall establish an RSNA, or it shall enable WEP by calling MLME.SETPROTEC-
TION.request primitive with ProtectType set to “Rx_Tx,” or it shall do nothing if it does not wish to
secure communication.

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using MLME-DELETEKEYS.request primitive (see 8.4.10) before invoking MLME-ASSOCI-
ATE.request primitive.

11.4.2 AP association procedures

When an Association Request frame is received from a STA, the AP shall associate with the STA using the
following procedure:

a) If the STA is not authenticated, the AP shall transmit a Deauthentication frame to the STA and ter-
minate the association procedure.

b) In an RSNA, the AP shall check the values received in the RSN information element, to see if the
values received match the AP’s security policy. If not, the association shall not be accepted.

c¢) The AP shall transmit an Association Response with a status code as defined in 7.3.1.9. If the status
value is “successful,” the association identifier assigned to the STA shall be included in the
response.

d) When the Association Response with a status value of “successful” is acknowledged by the STA, the
STA is considered to be associated with this AP. The state variable for the STA shall be set to
State 3.

e¢) The MLME shall issue a MLME-ASSOCIATE.indication primitive to inform the SME of the
association.

f) The SME shall establish an RSNA, or it shall enable WEP by calling MLME.SETPROTEC-
TION.request primitive with ProtectType set to “Rx_Tx,” or it shall do nothing if it does not wish to
secure communication.

Copyright © 2004 IEEE. Al rights reserved. 125

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

g) The SME will inform the DS of the new association.

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using MLME-DELETEKEYS.request primitive (see 8.4.10) upon receiving a MLME-ASSOCI-
ATE.indication primitive.

11.4.3 STA reassociation procedures

Upon receipt of an MLME-REASSOCIATE.request primitive, a STA shall reassociate with an AP via the
following procedure:

a) If the state variable is in State 1, the STA shall inform the SME of the failure of the reassociation by
issuing an MLME-REASSOCIATE.confirm primitive.

b) The STA shall transmit a Reassociation Request frame to the new AP. If the MLME-REASSOCI-
ATE.request primitive contained an RSN information element with only one pairwise cipher suite
and only one authenticated key suite, this RSN information element shall be included in the Reasso-
ciation Request frame.

c¢) If a Reassociation Response frame is received with a status value of “successful,” the STA is now
associated with the new AP. The state variable shall be set to State 3, and the MLME shall issue an
MLME-REASSOCIATE.confirm primitive indicating the successful completion of the operation.

d) If a Reassociation Response frame is received with a status value other than “successful” or the
AssociateFailureTimeout expires, the STA is not associated with the AP. The MLME shall issue an
MLME-REASSOCIATE.confirm primitive indicating the failure of the operation.

e) The SME shall establish an RSNA, or it shall enable WEP by calling MLME.SETPROTEC-
TION.request primitive with ProtectType set to “Rx_Tx,” or it shall do nothing if it does not wish to
secure communication.

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using MLME-DELETEKEYS.request primitive (see 8.4.10) before invoking MLME-REASSOCI-
ATE.request primitive.

11.4.4 AP reassociation procedures

Whenever a Reassociation Request frame is received from a STA, the AP uses the following procedure to
support reassociation:

a) Ifthe STA is not authenticated, the AP shall transmit a Deauthentication frame to the STA and ter-
minate the reassociation procedure.

b) Inan RSNA, the AP shall check the values received in the RSN information element, to see whether
the values received match the AP’s security policy. If not, the association shall not be accepted.

c¢) The AP shall transmit a Reassociation Response frame with a status code as defined in 7.3.1.9. If the
status value is “successful,” the association identifier assigned to the STA shall be included in the
response.

d) When the Reassociation Response frame with a status value of “successful” is acknowledged by the
STA, the STA is considered to be associated with this AP. The state variable for the STA shall be set
to State 3.

e) The MLME shall issue an MLME-REASSOCIATE.indication primitive to inform the SME of the
association.

f) The SME shall establish an RSNA, or it shall enable WEP by calling MLME.SETPROTEC-
TION.request primitive with ProtectType set to “Rx_Tx,” or it shall do nothing if it does not wish to
secure communication.

g) The SME will inform the DS of the new association.

126 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using MLME-DELETEKEYS.request primitive (see 8.4.10) upon receiving a MLME-REASSOCI-
ATE.indication primitive.

11.4.5 STA disassociation procedures

Upon receipt of an MLME-DISASSOCIATE.request primitive, an associated STA shall disassociate from
an AP using the following procedure:

a) The STA shall transmit a Disassociation frame to the AP with which that STA is associated.
b) The state variable for the AP shall be set to State 2 if and only if it was not State 1.

¢) The MLME shall issue an MLME-DISASSOCIATE.confirm primitive indicating the successful
completion of the operation.

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using the MLME-DELETEKEYS.request primitive (see 8.4.10) and by invoking MLME-SETPROTEC-
TION.request(None) before invoking the MLME-DISASSOCIATE.request primitive.

11.4.6 AP disassociation procedures

Upon receipt of a Disassociation frame from an associated STA, the AP shall disassociate the STA via the
following procedure:

a) The state variable for the STA shall be set to State 2.

b) The MLME shall issue an MLME-DISASSOCIATE.indication primitive to inform the SME of the
disassociation.

¢) The SME will update the DS.

The STA’s SME shall delete any PTKSA and temporal keys held for communication with the indicated STA
by using the MLME-DELETEKEY S.request primitive (see 8.4.10) and by invoking MLME-SETPROTEC-
TION.request(None) upon receiving a MLME-DISASSOCIATE.indication primitive.

End of changes to Clause 11.

Copyright © 2004 IEEE. Al rights reserved. 127

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Annex A

(normative)

Protocol Implementation Conformance Statements (PICS)

A.4 PICS proforma—IEEE Std 802.11, 1999 Edition

A.4.4 MAC protocol
A.4.4.1 MAC protocol capabilities

Insert the following at the end of the table in A.4.4.1:

Item Protocol capability References Status Support
Are the following MAC protocol
capabilities supported?
PC34 Robust security network association 7.2.2, (0] Yesd Nol
(RSNA) 7.3.14,
5433,
8.7.2,11.3,
114,833
PC34.1 RSN Information Element (IE) 7.3.2.25 PC34:M Yesd Nold
PC34.1.1 Group cipher suite 7.3.2.25 PC34.1:M Yesd Noll
PC34.1.2 Pairwise cipher suite list 7.3.2.25 PC34.1:M Yesd Nol
PC34.1.2.1 CTR [counter mode] with CBC-MAC 8.3.3 PC34:M Yesd Nol
[cipher-block chaining (CBC) with
message authentication code (MAC)]
Protocol (CCMP) data confidentiality
protocol
PC34.1.2.1.1 CCMP encapsulation procedure 8333 PC34.1.2.1:M | Yesd Nol
PC34.1.2.1.2 CCMP decapsulation procedure 8334 PC34.1.2.1:M | Yesd Nol
PC34.1.2.2 Temporal Key Integrity Protocol 8.3.2 PC34:0 Yesd Noll
(TKIP) data confidentiality protocol
PC34.1.2.2.1 TKIP encapsulation procedure 8.3.2.1.1 PC34.1.2.2:2M | Yesld Nol
PC34.1.2.2.2 TKIP decapsulation procedure 83.2.1.2 PC34.1222M | Yesd Noll
PC34.1.2.23 TKIP countermeasures 83.2.4 PC34.1.22:M | Yesd Noll
PC34.1.2.2.4 TKIP security services management 8.3.23 PC34.1.222M | Yesd Noll
PC34.1.3 Authentication key management 7.3.2.25, PC34.1:M Yesd Noll
(AKM) suite list 8.1.3

128 Copyright © 2004 IEEE. All rights reserved.

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS

IEEE
Std 802.11i-2004

Item Protocol capability References Status Support

PC34.1.3.1 IEEE 802.1X-defined/ 7.3.2.25 PC34.1:M Yesd Nold
RSNA key management

PC34.1.3.2 Preshared key (PSK)/ 7.3.2.25 PC34.1:M Yesd Nold
RSNA key management

PC34.1.3.3 RSNA key management 8.5 PC34.1:M Yesd Nol

PC34.1.3.3.1 Key hierarchy 8.5,8.6 PC34.1:M Yesd Nold

PC34.1.3.3.1.1 Pairwise key hierarchy 8.5.1.2 PC34.1:M Yesd Noll

PC34.1.3.3.1.2 Group key hierarchy 8.5.1.3 PC34.1:M Yesd Noll

PC34.1.3.3.2 4-Way Handshake 8.5.3 PC34.1:M Yesd Nol

PC34.1.3.3.3 Group Key Handshake 854 PC34.1:M Yesd Noll

PC34.1.4 RSN capabilities 7.3.2.25, PC34.1:M Yesd Noll

8.1.2

PC34.1.5 RSNA preauthentication 8.4.6.1 PC34.1:0 Yesd Noll

PC34.1.6 RSNA security association 8.4 PC34.1:M Yesd Noll
management

PC34.1.7 RSNA pairwise master key security 8.4.1, PC34.1:M Yesd Noll
association (PMKSA) caching 8.4.6.2

PC34.1.8 RSNA extended service set (ESS) 8.4.6,8.4.8 | (PC34.1 and Yesd Nold

CF1)M

PC34.1.8.1 RSNA STAKey 8.52.1 PC34.1.8:0 Yesd Nold

PC34.1.9 RSNA independent basic service set 8.4.4, (PC34.1 and Yesd Nold
(IBSS) 847,849 | CF2).0

Copyright © 2004 IEEE. Al rights reserved. 129

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Annex C

(normative)

Formal description of MAC operation

C.3 State machines for MAC stations

Insert the following text as the final paragraph before the first diagram of C.3:

This subclause describes the security behavior of only 8.2.1 and 8.2.2.

C.4 State machines for MAC AP

Insert the following text as the final paragraph before the first diagram of C.4:

This subclause describes the security behavior of only 8.2.1 and 8.2.2.

130 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Annex D

(normative)

ASN.1 encoding of the MAC and PHY MIB

In “Major sections” of Annex D, change the dotl1smt object identifier list as follows:

-— dotllsmt GROUPS

-- dotllStationConfigTable ::= { dotllsmt 1 }
-- dotllAuthenticationAlgorithmsTable ::= { dotllsmt 2 }
-- dotllWEPDefaultKeysTable ::= { dotllsmt 3 }
-- dotllWEPKeyMappingsTable ::= { dotllsmt 4 }
-- dotllPrivacyTable ::= { dotllsmt 5 }
-- dotllSMTnotification ::= { dotllsmt 6 }
-- dotllMultiDomainCapabilityTable ::= { dotllsmt 7 }
-— dotllSpectrumManagementTable ::= { dotllsmt 8 }
-- dotllRSNAConfigTable ::= { dotllsmt 9 }
—-- dotllRSNAConfigPairwiseCiphersTable ::= { dotllsmt 10 }
—-- dotllRSNAConfigAuthenticationSuitesTable ::= { dotllsmt 11 }
-— dotl1lRSNAStatsTable ::= { dotllsmt 12 }

In “SMT Station Config Table” in Annex D, change Dotl1StationConfigEntry as follows:

DotllStationConfigEntry ::=

SEQUENCE {

dotllStationID MacAddress,
dotllMediumOccupancyLimit INTEGER,
dotllCFPollable TruthValue,
dotl1CFPPeriod INTEGER,
dotl11CFPMaxDuration INTEGER,
dotllAuthenticationResponseTimeOut Unsigned32,
dotllPrivacyOptionImplemented TruthValue,
dotllPowerManagementMode INTEGER,
dotllDesiredSSID OCTET STRING,
dotllDesiredBSSType INTEGER,
dotllOperationalRateSet OCTET STRING,
dotllBeaconPeriod INTEGER,
dotl1DTIMPeriod INTEGER,
dotllAssociationResponseTimeOut Unsigned32,
dotllDisassociateReason INTEGER,
dotllDisassociateStation MacAddress,
dotllDeauthenticateReason INTEGER,
dotllDeauthenticateStation MacAddress,
dotllAuthenticateFailStatus INTEGER,
dotllAuthenticateFailStation MacAddress,
dotllMultiDomainCapabilityImplemented TruthValue,
dotllMultiDomainCapabilityEnabled TruthValue,
dotllCountryString OCTET STRING,
dotllSpectrumManagementImplemented TruthValue,
dotllSpectrumManagementRequired TruthValue,
dotl11RSNAOptionImplemented TruthValue,
dotllRSNAPreauthenticationImplemented TruthValue }

In “SMT Station Config Table” in Annex D, insert the following attributes after dotl1Spectrum-
ManagementRequired { dotl 1StationConfigEntry 25 }:

dotl11RSNAOptionImplemented OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only

Copyright © 2004 IEEE. Al rights reserved. 131

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

STATUS current
DESCRIPTION
"This variable indicates whether the entity is RSNA-capable."
:= { dotllStationConfigEntry 26 }

dotllRSNAPreauthenticationImplemented OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This variable indicates whether the entity supports RSNA
preauthentication. This cannot be TRUE unless
dot1l1RSNAOptionImplemented is TRUE."
::= { dotllStationConfigEntry 27 }

In “dotl1PrivacyTable TABLE” in Annex D, change Dotl1PrivacyEntry as follows:

DotllPrivacyEntry ::=
SEQUENCE {
dotllPrivacyInvoked TruthValue,
dotllWEPDefaultKeyID INTEGER,
dotllWEPKeyMappingLength Unsigned32,
dotllExcludeUnencrypted TruthValue,
dotl1lWEPICVErrorCount Counter32,
dotllWEPExcludedCount Counter32,
dotl11RSNAEnabled TruthValue,

dotl11lRSNAPreauthenticationEnabled TruthValue }

In the “dotl1PrivacyTable TABLE” of Annex D, change dotl 1PrivacyInvoked as follows:

dotllPrivacyInvoked OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"When this attribute is £¥weTRUE, it shall indicate that theIEEE—
80211 WEP-mechanism—is—usedsome level of security is invoked for
transmitting frames of type Data. The—defauvlt—alue—-of—+this
attribute—shall—be—false—For WEP-only clients, the security mecha-
nism used is WEP.

For RSNA-capable clients, an additional variable dotllRSNAEnabled
indicates whether RSNA is enabled. If dotllRSNAEnabled is FALSE or
the MIB variable does not exist, the security mechanism invoked is
WEP; if dotl1RSNAEnabled is TRUE, RSNA security mechanisms invoked
are configured in the dotllRSNAConfigTable. The default value of
this attribute shall be FALSE."

:= { dotllPrivacyEntry 1 }

In “dotl1PrivacyTable TABLE” of Annex D, change dotl 1ExcludeUnencrypted as follows:

dotllExcludeUnencrypted OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"When this attribute is true, the STA shall not indicate at the MAC
service interface received MSDUs that have the WEP—Protected Frame
subfield of the Frame Control field equal to zero. When this
attribute is false, the STA may accept MSDUs that have the WEP sub-
field of the Frame Control field equal to zero. The default value
of this attribute shall be false."

::= { dotllPrivacyEntry 4 }

132 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

In “dotl1PrivacyTable TABLE” of Annex D, change dotl1WEPICVErrorCount as follows:

dotl1WEPICVErrorCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This counter shall increment when a frame is received with the
WEP—Protected Frame subfield of the Frame Control field set to one
and the value of the ICV as received in the frame does not match the
ICV value that is calculated for the contents of the received

frame. ICV errors for TKIP are not counted in this variable but
in dotl1RSNAStatsTKIPICVErrors."
:= { dotllPrivacyEntry 5 }

In “dotl1PrivacyTable TABLE” of Annex D, change dotl1WEPExcludedCount as follows:

dotllWEPExcludedCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This counter shall increment when a frame is received with the WEP—
Protected Frame subfield of the Frame Control field set to zero and

the value of dotllExcludeUnencrypted causes that frame to be dis-
carded."

::= { dotllPrivacyEntry 6 }

In “dotllPrivacyTable TABLE” in Annex D, insert

the following attributes after
dotl IWEPExcludedCount { dotl1PrivacyEntry 6 }:

dotl1RSNAEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"When this object is set to TRUE,

this shall indicate that RSNA is
enabled on this entity.

The entity will advertise the RSN Informa-
tion Element in its Beacon and Probe Response frames. Configuration
variables for RSNA operation are found in the dotllRSNAConfigTable.

This object requires that dotllPrivacyInvoked also be set to TRUE."
::= { dotllPrivacyEntry 7 }

dotl1RSNAPreauthenticationEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"When this object is set to TRUE, this shall indicate that RSNA
preauthentication is enabled on this entity.

This object requires that dotllRSNAEnabled also be set to TRUE."
::= { dotllPrivacyEntry 8 }

In “dotl1CountersEntry TABLE” of Annex D, change dotl 1 WEPUndecryptableCount as follows:

dotllWEPUndecryptableCount OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current

Copyright © 2004 IEEE. Al rights reserved. 133

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

DESCRIPTION

"This counter shall increment when a frame is received with the WEPR-
Protected Frame subfield of the Frame Control field set to one and
the WEPOn value for the key mapped to the transmitter's MAC address
indicates that the frame should not have been encrypted or that
frame is discarded due to the receiving STA not implementing the
privacy option."

::= { dotllCountersEntry 14 }

In “Compliance Statements” of Annex D, change the dotl1Compliance as follows:

dotllCompliance MODULE-COMPLIANCE

STATUS current

DESCRIPTION
"The compliance statement for SNMPv2 entities
that implement the IEEE 802.11 MIB."

MODULE -- this module

MANDATORY-GROUPS {
dotllSMTbaseZ24,
dotllMACbase, dotllCountersGroup,
dotllSmtAuthenticationAlgorithms,
dotllResourceTypelID, dotllPhyOperationComplianceGroup }

In “Compliance Statements” of Annex D, change OPTIONAL-GROUPS as follows:

-— OPTIONAL-GROUPS { dotllSMTprivacy, dotllMACStatistics,

-- dotllPhyAntennaComplianceGroup, dotllPhyTxPowerComplianceGroup,
-= dotllPhyRegDomainsSupportGroup,

-- dotllPhyAntennasListGroup, dotllPhyRateGroup,

-= dotl11SMTbase3, dotllMultiDomainCapabilityGroup,

-- dotl1PhyFHSSComplianceGroup2, dotllRSNAadditions }

:= { dotllCompliances 1 }
In “Groups - units of conformance” of Annex D, change dotl 1SMTbase?2 as follows:

dotl1lSMTbase2 OBJECT-GROUP

OBJECTS { dotllMediumOccupancylLimit,
dotllCFPollable,
dotl1CFPPeriod,
dotl1CFPMaxDuration,
dotllAuthenticationResponseTimeOut,
dotllPrivacyOptionImplemented,
dotllPowerManagementMode,
dotl1lDesiredSSID, dotllDesiredBSSType,
dotllOperationalRateSet,
dotllBeaconPeriod, dotllDTIMPeriod,
dotllAssociationResponseTimeOut,
dotllDisassociateReason,
dotllDisassociateStation,
dotllDeauthenticateReason,
dotllDeauthenticateStation,
dotllAuthenticateFailStatus,
dotllAuthenticateFailStation }

STATUS euwrrentdeprecated

DESCRIPTION
"The SMTbase2 object class provides the necessary support at the
STA to manage the processes in the STA such that the STA may
work cooperatively as a part of an IEEE 802.11 network."

::= { dotllGroups 18 }

134 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

In “Groups - units of conformance” in Annex D, insert the following objects after dotl1PhyERP-
ComplianceGroup { dotllGroups 24 }:

dotl1RSNAadditions OBJECT-GROUP

OBJECTS { dotllRSNAEnabled,
dotl1lRSNAPreAuthenticationEnabled }

STATUS current

DESCRIPTION
"This object class provides the objects from the IEEE 802.11 MIB
required to manage RSNA functionality. Note that additional objects
for managing this functionality are located in the IEEE 802.11 RSN
MIB."

::= { dotllGroups 25 }

dotl1SMTbase4 OBJECT-GROUP

OBJECTS { dotllMediumOccupancylLimit,
dotllCFPollable,
dotl1CFPPeriod,
dotl1CFPMaxDuration,
dotllAuthenticationResponseTimeOut,
dotllPrivacyOptionImplemented,
dotllPowerManagementMode,
dotllDesiredSSID, dotllDesiredBSSType,
dotllOperationalRateSet,
dotllBeaconPeriod, dotllDTIMPeriod,
dotllAssociationResponseTimeOut,
dotllDisassociateReason,
dotllDisassociateStation,
dotllDeauthenticateReason,
dotllDeauthenticateStation,
dotllAuthenticateFailStatus,
dotllAuthenticateFailStation,
dotllMultiDomainCapabilityImplemented,
dotllMultiDomainCapabilityEnabled,
dotllCountryString,
dotl11RSNAOptionImplemented }

STATUS current

DESCRIPTION
"The SMTbased4 object class provides the necessary support at the
IEEE STA to manage the processes in the STA so that the STA may work
cooperatively as a part of an IEEE 802.11 network."

::= { dotllGroups 26 }

After the “Groups - units of conformance” section (and before the “End of 802.11 MIB” line) in
Annex D, insert the new sections “dotlIRSNAConfig Table (RSNA and TSN),”
“dot1 IRSNAConfigPairwiseCiphers Table,” “dotl IRSNAConfigAuthenticationSuites Table,”
“dotl IRSNAStats Table,” “Conformance information - RSN,” “Compliance statements - RSN,” and
“Groups - units of conformance - RSN as follows:

—— kk kA k kA k kA kA h kA hhkhkhhkh kA hhkhkhkhkhhhkhhkrhhkhkhhkhkrhhkrhkhkhhhkhkhkrhkhkhkhkhkhkkhkhkhkxkxkkx

-- * dotllRSNAConfig TABLE (RSNA and TSN)

P B R R I i I e S I S I I S e S b S b I S b b 2b S b I 2b b b Sh S 2b b S b b Sb b S Sb S db i Sb db S 2b 2 2h b Sh db S 2b b S 2b S

dot11RSNAConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF DotllRSNAConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The table containing RSNA configuration objects."
::= { dotllsmt 9 }

dot1llRSNAConfigEntry OBJECT-TYPE

Copyright © 2004 IEEE. Al rights reserved. 135

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

SYNTAX DotllRSNAConfigEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the dotllRSNAConfigTable."
INDEX { ifIndex }
::= { dotllRSNAConfigTable 1 }

Dot11RSNAConfigEntry ::=
SEQUENCE {

dotl11RSNAConfigVersion
dotl1lRSNAConfigPairwiseKeysSupported
dotl11RSNAConfigGroupCipher
dot11RSNAConfigGroupRekeyMethod
dot11RSNAConfigGroupRekeyTime
dotl11RSNAConfigGroupRekeyPackets
dotl11RSNAConfigGroupRekeyStrict
dotl11RSNAConfigPSKValue
dotl11RSNAConfigPSKPassPhrase
dot11RSNAConfigGroupUpdateCount
dot1l1RSNAConfigPairwiseUpdateCount
dotl11RSNAConfigGroupCipherSize
dotl11RSNAConfigPMKLifetime
dotl11RSNAConfigPMKReauthThreshold
dot11RSNAConfigNumberOfPTKSAReplayCounters
dotl11RSNAConfigSATimeout
dotllRSNAAuthenticationSuiteSelected
dotl1RSNAPairwiseCipherSelected
dot11RSNAGroupCipherSelected
dot11RSNAPMKIDUsed
dotl1lRSNAAuthenticationSuiteRequested
dotl1RSNAPairwiseCipherRequested
dot11RSNAGroupCipherRequested
dot11RSNATKIPCounterMeasuresInvoked
dotl1RSNA4WayHandshakeFailures
dot11RSNAConfigNumberOfGTKSAReplayCounters

Integer32,
Unsigned32,
OCTET STRING,
INTEGER,
Unsigned32,
Unsigned32,
TruthValue,
OCTET STRING,
DisplayString,
Unsigned32,
Unsigned32,
Unsigned32,
Unsigned32,
Unsigned32,
INTEGER,
Unsigned32,
OCTET STRING,
OCTET STRING,
OCTET STRING,
OCTET STRING,
OCTET STRING,
OCTET STRING,
OCTET STRING,
Unsigned32,
Unsigned32,
INTEGER }

-- dotllRSNAConfigEntry 1 has been deprecated.

dotl11RSNAConfigVersion OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The highest RSNA version this entity supports. See 7.3.2.9."
::= { dotllRSNAConfigEntry 2 }

dotl1RSNAConfigPairwiseKeysSupported OBJECT-TYPE

SYNTAX Unsigned32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"This object indicates how many pairwise keys the entity supports
for RSNA."

::= { dotllRSNAConfigEntry 3 }

dot11RSNAConfigGroupCipher OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object indicates the group cipher suite selector the entity
must use. The group cipher suite in the RSN Information Element

136 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

shall take its value from this variable. It consists of an OUI (the
first 3 octets) and a cipher suite identifier (the last octet)."
::= { dotllRSNAConfigEntry 4 }

dotl11RSNAConfigGroupRekeyMethod OBJECT-TYPE

SYNTAX INTEGER { disabled(l), timeBased(2), packetBased(3), timepacket-
Based (4) }

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"This object selects a mechanism for rekeying the RSNA GTK. The
default is time-based, once per day. Rekeying the GTK is only
applicable to an entity acting in the Authenticator role (an AP in
an ESS) ."

DEFVAL { timeBased }

::= { dotllRSNAConfigEntry 5 }

dot1l1RSNAConfigGroupRekeyTime OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

UNITS "seconds"

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"The time in seconds after which the RSNA GTK shall be refreshed.
The timer shall start at the moment the GTK was set using the MLME-
SETKEYS.request primitive."

DEFVAL { 86400 } -- once per day

::= { dotllRSNAConfigEntry 6 }

dotl11RSNAConfigGroupRekeyPackets OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

UNITS "1000 packets"

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"A packet count (in 1000s of packets) after which the RSNA GTK
shall be refreshed. The packet counter shall start at the moment
the GTK was set using the MLME-SETKEYS.request primitive and it
shall count all packets encrypted using the current GTK."

::= { dotllRSNAConfigEntry 7 }

dotl11RSNAConfigGroupRekeyStrict OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"This object signals that the GTK shall be refreshed whenever a STA
leaves the BSS that possesses the GTK."

:= { dotllRSNAConfigEntry 8 }

dotl11RSNAConfigPSKValue OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(32))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The PSK for when RSNA in PSK mode is the selected AKM suite. In
that case, the PMK will obtain its value from this object.

This object is logically write-only. Reading this variable shall
return unsuccessful status or null or zero."

::= { dotllRSNAConfigEntry 9 }

dot11RSNAConfigPSKPassPhrase OBJECT-TYPE
SYNTAX DisplayString

Copyright © 2004 IEEE. Al rights reserved. 137

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The PSK, for when RSNA in PSK mode is the selected AKM suite, is
configured by dotllRSNAConfigPSKValue.

An alternative manner of setting the PSK uses the password-to-key
algorithm defined in H.4. This variable provides a means to enter a
pass-phrase. When this object is written, the RSNA entity shall use
the password-to-key algorithm specified in H.4 to derive a pre-
shared and populate dotllRSNAConfigPSKValue with this key.
This object is logically write-only. Reading this wvariable shall
return unsuccessful status or null or zero."

::= { dotllRSNAConfigEntry 10 }

-- dotllRSNAConfigEntry 11 and dotllRSNAConfigEntry 12 have been
-- deprecated.

dot11RSNAConfigGroupUpdateCount OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"The number of times Message 1 in the RSNA Group Key Handshake will
be retried per GTK Handshake attempt."

DEFVAL { 3 } --

::= { dotllRSNAConfigEntry 13 }

dot1l1RSNAConfigPairwiseUpdateCount OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The number of times Message 1 and Message 3 in the RSNA 4-Way Hand-
shake will be retried per 4-Way Handshake attempt."
DEFVAL { 3 } --

::= { dotllRSNAConfigEntry 14 }

dot11RSNAConfigGroupCipherSize OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This object indicates the length in bits of the group cipher key."
::= { dotllRSNAConfigEntry 15 }

dot11RSNAConfigPMKLifetime OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
UNITS "seconds"
MAX-ACCESSread-write
STATUS current
DESCRIPTION
"The maximum lifetime of a PMK in the PMK cache."
DEFVAL { 43200 } --
:= { dotllRSNAConfigEntry 16 }

dot11RSNAConfigPMKReauthThreshold OBJECT-TYPE
SYNTAX Unsigned32 (1..100)
UNITS "percentage"
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The percentage of the PMK lifetime that should expire before an
IEEE 802.1X reauthentication occurs."

138 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

DEFVAL { 70 } --
:= { dotllRSNAConfigEntry 17 }

dot11RSNAConfigNumberOfPTKSAReplayCounters OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Specifies the number of PTKSA replay counters per association:
0 -> 1 replay counter,
1 -> 2 replay counters,
2 => 4 replay counters,
3 -> 16 replay counters"
::= { dotllRSNAConfigEntry 18 }

dot11RSNAConfigSATimeout OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
UNITS "seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The maximum time a security association shall take to set up."
DEFVAL { 60 } --
:= { dotllRSNAConfigEntry 19 }

dotllRSNAAuthenticationSuiteSelected OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The selector of the last AKM suite negotiated."
::= { dotllRSNAConfigEntry 20 }

dotl1lRSNAPairwiseCipherSelected OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(4))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The selector of the last pairwise cipher negotiated."
::= { dotllRSNAConfigEntry 21 }

dot11RSNAGroupCipherSelected OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The selector of the last group cipher negotiated."
::= { dotllRSNAConfigEntry 22 }

dot11RSNAPMKIDUsed OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(16))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The selector of the last PMKID used in the last 4-Way Handshake."
::= { dotllRSNAConfigEntry 23 }

dotllRSNAAuthenticationSuiteRequested OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The selector of the last AKM suite requested."
::= { dotllRSNAConfigEntry 24 }

Copyright © 2004 IEEE. Al rights reserved. 139

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

dotl1RSNAPairwiseCipherRequested OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The selector of the last pairwise cipher requested."
::= { dotllRSNAConfigEntry 25 }

dot11RSNAGroupCipherRequested OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The selector of the last group cipher requested."
:= { dotllRSNAConfigEntry 26 }

dot11RSNATKIPCounterMeasuresInvoked OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"Counts the number of times that a TKIP MIC failure occurred two

times within 60 s and TKIP countermeasures were invoked. This

attribute counts both local and remote MIC failure events reported

to this STA. It increments every time TKIP countermeasures are
invoked"
::= { dotllRSNAConfigEntry 27 }

dotl1RSNA4WayHandshakeFailures OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Counts the number of 4-Way Handshake failures."
::= { dotllRSNAConfigEntry 28 }

dot11RSNAConfigNumberOfGTKSAReplayCounters OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Specifies the number of GTKSA replay counters per association:

0 -> 1 replay counter,

1 -> 2 replay counters,

2 —=> 4 replay counters,

3 -> 16 replay counters"
::= { dotllRSNAConfigEntry 29 }

e AR R A R A A A A AR A A A A A A A A A AR A AR A AR AR A AR A AR A AR AR A AR A AR AR A AR A AR A AR AR A AR A ARk x K

-- * End of dotllRSNAConfig TABLE

e AR AR A A A A A AR A A A A A A A A A AR A AR A A A AR A A A A I A A A A AR A A A A A AR A A A A A AR A AR A A A Ak kA kK

—— kA kA Ak A A kA kA Ak h Ak h A Ak Ak kA hhkhkhhkhk kA hhkhkhhkhhkhkhhkhhkdkhkhhkhkhkrhkkhkhkdhkkhkhkhkrxkhkxkk*x

-- * dotllRSNAConfigPairwiseCiphers TABLE

e AR R A R A A AR A A A A A A A A A A A AR A AR A A A AR A AR A A A A A A AR A AR A AR AR A AR A AR A A A AR A AR A AR kXK

dotl1RSNAConfigPairwiseCiphersTable OBJECT-TYPE
SYNTAX SEQUENCE OF DotllRSNAConfigPairwiseCiphersEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"This table lists the pairwise ciphers supported by this entity.
allows enabling and disabling of each pairwise cipher by network

140 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

management. The pairwise cipher suite list in the RSN Information

Element is formed using the information in this table."
::= { dotllsmt 10 }

dotl11RSNAConfigPairwiseCiphersEntry OBJECT-TYPE
SYNTAX DotllRSNAConfigPairwiseCiphersEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table entry, indexed by the interface index (or all inter-

faces) and the pairwise cipher."

INDEX { dotllRSNAConfigIndex, dotllRSNAConfigPairwiseCipherIndex }

:= { dotllRSNAConfigPairwiseCiphersTable 1 }

Dot11RSNAConfigPairwiseCiphersEntry ::=

SEQUENCE {
dotl1l1RSNAConfigPairwiseCipherIndex Unsigned32,
dot1l1RSNAConfigPairwiseCipher OCTET STRING,
dotl1RSNAConfigPairwiseCipherEnabled TruthValue,
dotl1l1RSNAConfigPairwiseCipherSize Unsigned32 }

dot1l1RSNAConfigPairwiseCipherIndex OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The auxiliary index into the dotllRSNAConfigPairwiseCiphersTable."

::= { dotllRSNAConfigPairwiseCiphersEntry 1 }

dotl1l1RSNAConfigPairwiseCipher OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (4))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The selector of a supported pairwise cipher. It consists of an OUI

(the first 3 octets) and a cipher suite identifier (the last

octet) ."
:= { dotllRSNAConfigPairwiseCiphersEntry 2 }

dotl1l1RSNAConfigPairwiseCipherEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object enables or disables the pairwise cipher."
:= { dotllRSNAConfigPairwiseCiphersEntry 3 }

dotl1lRSNAConfigPairwiseCipherSize OBJECT-TYPE
SYNTAX Unsigned32 (0..4294967295)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This object indicates the length in bits of the pairwise cipher

key. This should be 256 for TKIP and 128 for CCMP."
:= { dotllRSNAConfigPairwiseCiphersEntry 4 }

—— kkk ok ok kA h kA h kA h kA hhkhkhhkhhkhAhhhhkhkhhhkhhkrhhkhhhkhhkrhhkrhkhkhhkhkhkhkrhkhkhkhhkhkkhkhkhkrxkxkk*x

-— * End of dotllRSNAConfigPairwiseCiphers TABLE

—— kk Ak kA Ak A A kA kA Ak h Ak kA Ak Ak kA hkhkhkhhkhk kA hhkhkhhkhkhkhkhhkrhkhkhkhhkhkdkrhkkhkhkhkhkkhkhkxkhkxkk*x
e AR AR A A A A A A A A A A A A A A A AR AR A A A A AR A A A A A A A A A A A A IR A AR A A AR A AR A A Ak Ak kA Ak ok

-- * dotllRSNAConfigAuthenticationSuites TABLE

—— kk ok ok kA k kA hk kA h kA hhkhkhhkhhkhkhh bk hkhkhhhkhhkrhkhkhkhhkhkrhhkrhkhkhhhkhkhkrhkhkhkhkhAhkkrkhkhkrxkxkkx

Copyright © 2004 IEEE. All rights reserved.

141

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

dotl11RSNAConfigAuthenticationSuitesTable OBJECT-TYPE

SYNTAX SEQUENCE OF DotllRSNAConfigAuthenticationSuitesEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"This table lists the AKM suites supported by this entity. Each AKM
suite can be individually enabled and disabled. The AKM suite list
in the RSN information element is formed using the information in
this table."

:= { dotllsmt 11 }

dotl1RSNAConfigAuthenticationSuitesEntry OBJECT-TYPE
SYNTAX DotllRSNAConfigAuthenticationSuitesEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (row) in the dotllRSNAConfigAuthenticationSuitesTable."

INDEX { dotllRSNAConfigAuthenticationSuiteIndex }

::= { dotllRSNAConfigAuthenticationSuitesTable 1 }

Dot11RSNAConfigAuthenticationSuitesEntry ::=

SEQUENCE {
dot11RSNAConfigAuthenticationSuiteIndex Unsigned32,
dotl1l1RSNAConfigAuthenticationSuite OCTET STRING,
dotl1RSNAConfigAuthenticationSuiteEnabled TruthValue }

dotl1RSNAConfigAuthenticationSuiteIndex OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"The auxiliary variable used as an index into the
dotl1lRSNAConfigAuthenticationSuitesTable."

::= { dotllRSNAConfigAuthenticationSuitesEntry 1 }

dotl1RSNAConfigAuthenticationSuite OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(4))

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The selector of an AKM suite. It consists of an OUI (the first 3
octets) and a cipher suite identifier (the last octet)."

::= { dotllRSNAConfigAuthenticationSuitesEntry 2 }

dotl11RSNAConfigAuthenticationSuiteEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This variable indicates whether the corresponding AKM suite is
enabled/disabled."
:= { dotllRSNAConfigAuthenticationSuitesEntry 3 }

—— kk ok ok kA khkh ok kA hk kA hhkhkhhkh kA hhhkhkhkhhhkhhkrhkhkhkhhkhkrhhkrhkhkhkhhkhkhkrhkhkhkhhkhkhkhkrxkxkkx

-- * End of dotllRSNAConfigAuthenticationSuites TABLE

—— kA kA Ak A A kA A kA Ak h Ak h A Ak Ak kA hhAhkhhkhkh Ak hkhkhhkhkhkhkhhkrhkdkhkhhkhkhkrhkhkhkhkhkhkkhkhkrxkhkxkk*x

e AR AR A A A A A R A A A A A A A A A AR AR A A A A AR A A A A I A A A A AR A A A A A A A A A A A A AR A AR A A A Ak kA kK

-- * dotllRSNAStats TABLE

—— hkk ok ok khkhkhkhkhkhhkhk kb hk kb h bk hk bk h kb hhhk bk bk h bk bk hkhk kb hk kb hhkhkhkrhkhkhkkhkhkhhk ok hk ok hhkhkhxxk
dotl1lRSNAStatsTable OBJECT-TYPE

SYNTAX SEQUENCE OF DotllRSNAStatsEntry
MAX-ACCESS not-accessible

142 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

STATUS current
DESCRIPTION
"This table maintains per-STA statistics in an RSN. The entry with
dot11RSNAStatsSTAAddress set to FF-FF-FF-FF-FF-FF shall contain
statistics for broadcast/multicast traffic."
c:= { dotllsmt 12 }

dotllRSNAStatsEntry OBJECT-TYPE
SYNTAX DotllRSNAStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the dotllRSNAStatsTable."
INDEX { dotllRSNAConfigIndex, dotllRSNAStatsIndex }
::= { dotllRSNAStatsTable 1 }

Dotl1RSNAStatsEntry ::=
SEQUENCE {

dotl1lRSNAStatsIndex Unsigned32,
dotl11RSNAStatsSTAAddress MacAddress,
dotl1l1RSNAStatsVersion Unsigned32,
dotllRSNAStatsSelectedPairwiseCipher OCTET STRING,
dotl1RSNAStatsTKIPICVErrors Counter32,
dotl1lRSNAStatsTKIPLocalMICFailures Counter32,
dot11RSNAStatsTKIPRemoteMICFailures Counter32,
dot1l1RSNAStatsCCMPReplays Counter32,
dotl11RSNAStatsCCMPDecryptErrors Counter32,
dot11RSNAStatsTKIPReplays Counter32 }

dotl1RSNAStatsIndex OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An auxiliary index into the dotllRSNAStatsTable."
::= { dotllRSNAStatsEntry 1 }

dotl1lRSNAStatsSTAAddress OBJECT-TYPE

SYNTAX MacAddress

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The MAC address of the STA to which the statistics in this
conceptual row belong."

::= { dotllRSNAStatsEntry 2 }

dotl11RSNAStatsVersion OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The RSNA version with which the STA associated."
::= { dotllRSNAStatsEntry 3 }

dotl11RSNAStatsSelectedPairwiseCipher OBJECT-TYPE

SYNTAX OCTET STRING (SIZE (4))

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The pairwise cipher suite Selector (as defined in 7.3.29.1) used
during association, in transmission order."

::= { dotllRSNAStatsEntry 4 }

dot11RSNAStatsTKIPICVErrors OBJECT-TYPE

Copyright © 2004 IEEE. Al rights reserved. 143

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Counts the number of TKIP ICV errors encountered when decrypting
packets for the STA."
:= { dotllRSNAStatsEntry 5 }

dotl11RSNAStatsTKIPLocalMICFailures OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"Counts the number of MIC failures encountered when checking the
integrity of packets received from the STA at this entity."

::= { dotllRSNAStatsEntry 6 }

dot11RSNAStatsTKIPRemoteMICFailures OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"Counts the number of MIC failures encountered by the STA identi-
fied by dotllStatsSTAAddress and reported back to this entity."

::= { dotllRSNAStatsEntry 7 }

dotl11RSNAStatsCCMPReplays OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The number of received CCMP MPDUs discarded by the replay
mechanism."

::= { dotllRSNAStatsEntry 8 }

dot1l1RSNAStatsCCMPDecryptErrors OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The number of received MPDUs discarded by the CCMP decryption
algorithm."

::= { dotllRSNAStatsEntry 9 }

dotl11RSNAStatsTKIPReplays OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Counts the number of TKIP replay errors detected."
::= { dotllRSNAStatsEntry 10 }

—— kA kA Ak A A kA kA Ak kA kA Ak Ak kA hhkhkhhkhk kA hhkhkhhkhhkhkhhkrhkdkhkhhkhkhkrhkkhkhkhkhkkhkhkxkhkxxk*x

-- * End of dotllRSNAStats TABLE

e AR R A R A A A A A A A A A A A A A A AR A AR A AR AR KA AR A AR A A A AR A AR A AR AR A AR A AR A AR A A A AR A A A kXK

—— kk ok k kA h kA Ak Ak kA hhkhkhhkh kA hhhhkhkhhhkhhkdrhkhkhkhhkhhkrhhkrhkhkhkhkhkhhkrhkhkhkhkhkhkkhkhkhkrxkxkkx

-— * Conformance information - RSN
—_— kkhkhk kA hkhhkhk Ak h kA Ak hkhk bk Ak kA Ak hhk bk hkhkh kA kb kA hkhkhk kA hkhkhkhkhhkhkhkhhkkhhkhkhkkhkhhkhhkhkkxkxk*k

e AR AR A A A A A AR A A A A A A A A A AR AR A A A A AR A A A A I A A A A AN A A A A A AR A A A A A AR A A A Ak Ak kA Ak kK

-- * Compliance Statements - RSN
—_— kkk ok ok hkhkhkhkhkhkhhkhkhk bk hk bk hk bk hk bk bk hk kb hhkhk bk bk hhk bk hkh bk hk kb h bk hkrhkhkhkkhkhkhhkrhkhkrkhhkhkhx*k

dot1llRSNCompliance MODULE-COMPLIANCE

144 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

STATUS current

DESCRIPTION
"The compliance statement for SNMPv2 entities that implement the
IEEE 802.11 RSN MIB."

MODULE -- this module

MANDATORY-GROUPS {
dotl1lRSNBase }

—-— OPTIONAL-GROUPS {dotllRSNPMKcachingGroup }
:= { dotllCompliances 2 }

R SRR R R R R R R R R R R I b b b b b I b I e e

-— * Groups - units of conformance - RSN
P B R I i I I b S S e S b Sb b I 2 b b Sb S b I 2b b b 2h S db i S b I Sb b S Sb S db I Sb db S Sb 2 Sh b Sh b S 2b b S 2b S

dot11RSNBase OBJECT-GROUP

OBJECTS {
dotl1lRSNAConfigVersion,
dotl11RSNAConfigPairwiseKeysSupported,
dotl11RSNAConfigGroupCipher,
dot11RSNAConfigGroupRekeyMethod,
dot11RSNAConfigGroupRekeyTime,
dot11RSNAConfigGroupRekeyPackets,
dotl11RSNAConfigGroupRekeyStrict,
dot1l1RSNAConfigPSKValue,
dotl11RSNAConfigPSKPassPhrase,
dotl11RSNAConfigGroupUpdateCount,
dotl11RSNAConfigPairwiseUpdateCount,
dot1l1RSNAConfigGroupCipherSize,
dotl1l1RSNAConfigPairwiseCipher,
dotl11RSNAConfigPairwiseCipherEnabled,
dotl1RSNAConfigPairwiseCipherSize,
dotl11RSNAConfigAuthenticationSuite,
dotl1lRSNAConfigAuthenticationSuiteEnabled,
dot11RSNAConfigNumberOfPTKSAReplayCounters,
dot1l1RSNAConfigSATimeout,
dot11RSNAConfigNumberOfGTKSAReplayCounters,
dotllRSNAAuthenticationSuiteSelected,
dotl11RSNAPairwiseCipherSelected,
dot11RSNAGroupCipherSelected,
dot1l1RSNAPMKIDUsed,
dotl11RSNAAuthenticationSuiteRequested,
dot11RSNAPairwiseCipherRequested,
dot11RSNAGroupCipherRequested,
dotl1l1RSNAStatsSTAAddress,
dotl11RSNAStatsVersion,
dot1l1RSNAStatsSelectedPairwiseCipher,
dotl1l1RSNAStatsTKIPICVErrors,
dot11RSNAStatsTKIPLocalMICFailures,
dot11RSNAStatsTKIPRemoteMICFailures,
dotl11RSNAStatsTKIPCounterMeasuresInvoked,
dotl1lRSNAStatsCCMPReplays,
dotl1lRSNAStatsCCMPDecryptErrors,
dotl1RSNAStatsTKIPReplays,
dotl11RSNAStats4WayHandshakeFailures }

STATUS current

DESCRIPTION
"The dotllRSNBase object class provides the necessary support for
managing RSNA functionality in the STA."

:= { dotllGroups 26 }

dot11RSNPMKcachingGroup OBJECT-GROUP

OBJECTS {
dotl11RSNAConfigPMKLifetime,

Copyright © 2004 IEEE. Al rights reserved. 145

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

dot11RSNAConfigPMKReauthThreshold
}
STATUS current
DESCRIPTION
"The dotllRSNPMKcachingGroup object class provides the necessary
support for managing PMK caching functionality in the STA"
:= { dotllGroups 27 }

146 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Annex E

(informative)

Bibliography

E.1 General
Insert the following references into E.1 and renumber references as appropriate:
[B11] Arazi, E. G., 4 Commonsense Approach to the Theory of Error Correcting Codes, MIT Press, 1988.

[B12] IETF RFC 1305-1992, Network Time Protocol (Version 3) Specification, Implementation and
Analysis.

[B13]IETF RFC 2548-1999, Microsoft Vendor-specific RADIUS Attributes.
[B14] IETF RFC 2865-2000, Remote Authentication Dial in User Service (RADIUS).
[B15] IETF RFC 3588-2003, Diameter Base Protocol.

[B16] PKCS #5 v2.0, “Password-Based Cryptography Standard,” http://www.rsasecurity.com/rsalabs/
node.asp?id=2127.

Copyright © 2004 IEEE. Al rights reserved. 147

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Insert the following text for Annex H following Annex G:

Annex H

(informative)

RSNA reference implementations and test vectors
H.1 TKIP temporal key mixing function reference implementation and test
vector

This clause provides a C-language reference implementation of the temporal key mixing function.
/***

Contents: Generate IEEE 802.11 per-frame RC4 key hash test vectors
Date: April 19, 2002
Notes:

This code is written for pedagogical purposes, NOT for performance.

**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <time.h>

typedef unsigned char byte; /* 8-bit byte (octet) */
typedef unsigned short ulé6b; /* 16-bit unsigned word */
typedef unsigned long u32b; /* 32-bit unsigned word */

/* macros for extraction/creation of byte/ul6b values */

#define RotRI1 (v16) ((((vle) >> 1) & OxT7FFF) ~ (((vle) & 1) << 15))
#define Lo8 (v16) (byte) ((v16) & O0x00FF))
#define Hi8 (v16) (byte) (((vle) >> 8) & Ox00FF

()
())
#define Lol6(v32) ((uléb) ((v32) & OxXFFFF))
#define Hil6(v32) ((uleéb) (((v32) >>16) & OxXFFFF))
#define Mkl6(hi,lo) ((lo) ~ (((uléb) (hi)) << 8))

/* select the Nth 16-bit word of the Temporal Key byte array TKI[] */
#define TK16(N) Mk16 (TK[2* (N)+1],TK[2* (N)])

/* S-box lookup: 16 bits --> 16 bits */
#define S (v16) (Sbox[0] [Lo8 (v16)] ~ Sbox[1][Hi8 (v1le)]1)

/* fixed algorithm "parameters" */

#define PHASEl LOOP_CNT 8 /* this needs to be "big enough" */
#define TA SIZE 6 /* 48-bit transmitter address */
#define TK SIZE 16 /* 128-bit Temporal Key */
#define P1K SIZE 10 /* 80-bit Phasel key */
#define RC4 KEY SIZE 16 /* 128-bit RC4KEY (104 bits unknown) */

/* configuration settings */
#define DO_SANITY CHECK 1 /* validate properties of S-box? */

148 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

/* 2-byte by 2-byte subset of the full AES S-box table */

const ul6b Sbox[2][256]= /* Sbox for hash (can be in ROM) */

{ {
0xC6A5,0xF884, 0xEE99, 0xF68D, 0xFFOD, 0xD6BD, 0xDEB1, 0x9154,
0x6050,0x0203, 0xCEA9, 0x567D,0xE719, 0xB562, 0x4DE6, 0XEC9A,
0x8F45,0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0XxFBROB,
0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
0x75C2,0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
0x685C, 0x51F4,0xD134,0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
0x080C, 0x9552,0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
0x0E09,0x2436,0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, OXEA9F,
0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, O0x5BFB,
O0xA4F6,0x764D,0xB761, 0x7DCE, 0x527B, 0xDD3E, Ox5E71, 0x1397,
0xA6F5,0xB968, 00000, 0xC12C,0x4060, 0xE31F,0x79C8, 0XxB6ED,
0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0OE8, 0x854A,
0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7,0x6655, 01194,
0x8ACF, 0xE910,0x0406, 0xFE81, 0xA0OF0, 0x7844, 0x25BA, 0x4BE3,
0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
0x63DF, 0x77C1, 0xAF75,0x4263,0x2030, 0xE51A, OxFDOE, 0xBF6D,
0x814C,0x1814,0x2635,0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
0x9357,0x55F2, 0xFC82,0x7A47,0xC8AC, 0xBAE7, 0x322B, 0xE695,
0xCOAQ,0x1998, 0x9ED1, OxA37F, 0x4466,0x547E, 0x3BAB, 0x0B83,
0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0OA, 0x486C, 0xB8E4,
0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4,0xD337, 0xF28B,
0xD532,0x8B43, 0x6E59, 0xDAB7,0x018C, 0xB164,0x9CD2, 0x49EOQ,
0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 01018,
0x6FD5, 0xF088, 0x4A6F, 0x5C72,0x3824,0x57F1,0x73C7,0x9751,
0xCB23,0xA17C, 0xE89C, 0x3E21,0x96DD, 0x61DC, 0x0D86, 0x0F85,
0xE090,0x7C42,0x71C4,0xCCAA, 0x90D8, 0x0605, 0xF701,0x1C12,
0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 09958, 0x3A27, 0x27B9,
0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
0x2DB6, 0x3C22,0x1592,0xC920,0x8749, 0xAAFF,0x5078, 0xA57A,
0x038F, 0x59F8, 00980, 0x1A17,0x65DA, 0xD731,0x84C6, 0xDOBS8,
0x82C3, 0x29B0, 0x5A77,0x1E11, O0x7BCB, OxA8FC, Ox6DD6, 0x2C3A,
}I

{ /* second half of table is byte-reversed version of first! */
0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
0x5060,0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
0xEC41,0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
0xC275,0x1CE1l, OxAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F383,
0x5C68,0xF451,0x34D1, 0x08F9,0x93E2, 0x73AB, 0x5362, 0x3F2A,
0x0C08,0x5295,0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, OxCD7F, 0x9FEA,
0x1B12,0x9E1D, 07458, 0x2E34,0x2D36, 0xB2DC, OxEEB4, 0xFB5B,
0xF6A4,0x4D76,0x61B7,0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
0xF5A6,0x68B9,0x0000, 0x2CC1,0x6040, 0x1FE3,0xC879, 0XEDBG6,
0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8BO, 0x4A85,
0x6BBB, 0x2AC5, 0xE54F, O0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
0xCF8A,0x10E9, 0x0604,0x81FE, OxFOAO, 0x4478, 0xBA25, 0xE34B,
0xF3A2,0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21,0x4870, 0x04F1,
0xDF63,0xC177,0x75AF, 0x6342,0x3020, 0x1AE5, Ox0EFD, 0x6DBF,
0x4C81,0x1418,0x3526,0x2FC3,0xE1BE, 0xA235,0xCC88, 0x392E,
0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, OxE7BA, 0x2B32, 0x95E06,
0xA0CO0,0x9819, 0xD19E, 0x7FA3,0x6644,0x7E54, 0xAB3B, 0x830B,
0xCA8C, 0x29C7, 0xD36B, 0x3C28,0x79A7, 0xE2BC, 0x1D16, 0x76AD,

Copyright © 2004 IEEE. Al rights reserved. 149

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

0x3BDB, 0x5664, 0x4E74,0x1E14,0xDB92, 0x0A0C, 0x6C48, 0XxE4BS8,
0x5D9F, Ox6EBD, OxEF43, 0xA6C4, 0xA839, 0xA431,0x37D3, 0x8BF2,
0x32D5,0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xEQ049,
0xB4D8, OxFAAC, 0x07F3, 0x25CF, OxAFCA, Ox8EF4, 0xE947,0x1810,
0xD56F, 0x88F0, 0x6F4A, 0x725C,0x2438,0xF157,0xC773,0x5197,
0x23CB, 0x7CAl, 0x9CE8, 0x213FE, 0xDD96, 0xDC61, 0x860D, 0x850F,
0x90EQ, 0x427C, 0xC471, 0xAACC,0xD890, 0x0506,0x01F7,0x121C,
0xA3C2,0x5F6A, OxF9AE, 0xD069,0x9117,0x5899, 0x273A, 0xB927,
0x38D9, 0x13ER, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
0xB62D, 0x223C,0x9215,0x20C9,0x4987, OxFFAA, 0x7850, 0x7AAS,
0x8F03,0xF859,0x8009,0x171A,0xDA65,0x31D7,0xC684, 0xB8DO,
0xC382,0xB029,0x775A,0x111E, 0xCB7B, O0xFCA8, 0xD66D, 0x3A2C,
}
}i

#if DO _SANITY CHECK
/%

Ak Ak hkhkhk Ak kA hhk bk kA hhk bk hhkhhkkhk kA hkhkhkhhkhkhkrhhkhkhdAhhkhkhhkrhkhkhhkrhkhkrhkhkhhkrhkkrkhhhkxkk*x

* Routine: SanityCheckTable -- verify Sbox properties

*

* Inputs: Sbox

* Output: None, but an assertion fails if the tables are wrong
* Notes:

*

The purpose of this routine is solely to illustrate and
* verify the following properties of the Sbox table:

* - the Sbox is a "2x2" subset of the AES table:

* Sbox + affine transform + MDS.

* - the Sbox table can be easily designed to fit in a

* 512-byte table, using a byte swap

* - the Sbox table can be easily designed to fit in a

* 256-byte table, using some shifts and a byte swap

R R S b I S b I 2h S S e S Sh I S b S S I Sb b b I b I S SE e S b I Sh S S R S b I S S S S b Sh b S b S S b S S S b i 2 db S S b S
*/

void SanityCheckTable (void)

{

const static int M x = 0x11B; /* AES irreducible polynomial */

const static byte Sbox8[256] = { /* AES 8-bit Sbox */
0x63,0x7¢c,0x77,0x7b,0xf2,0x6b, 0x6f, 0xc5,
0x30,0x01,0x67,0x2b,0xfe, 0xd7, Oxab, 0x76,
Oxca, 0x82,0xc9,0x7d, 0xfa,0x59,0x47,0x£f0,
Oxad, 0xd4, 0xa2,0xaf, 0x9c, 0xa4d4,0x72,0xcO,
Oxb7,0xfd, 0x93,0x26,0x36,0x3f, 0xf7,0xcc,
0x34,0xa5, 0xe5,0xf1l,0x71,0xd8,0x31,0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,
0x07,0x12,0x80,0xe2,0xeb, 0x27,0xb2,0x75,
0x09,0x83,0x2c,0xla,0xlb,0x6e,0x5a, 0xal,
0x52,0x3b, 0xd6, 0xb3,0x29, 0xe3,0x2f, 0x84,
0x53,0xd1,0x00,0xed, 0x20, 0xfc, Oxbl, 0x5b,
Ox6a, 0xcb, Oxbe, 0x39, 0x4a, 0x4c, 0x58, Oxcf,
0xd0, Oxef, Oxaa, O0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f, 0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d, 0x38,0xf5,
Oxbc, 0xb6, 0xda, 0x21,0x10,0xff, 0xf3, 0xd2,
Oxcd, 0x0c, 0x13,0xec, 0x5f,0x97,0x44,0x17,
Oxc4,0xa77,0x7e,0x3d,0x64,0x5d,0x19,0x73,
0x60,0x81,0x4f,0xdc, 0x22,0x2a,0x90,0x88,
0x46,0xee, 0xb8,0x14, 0xde, 0x5e, 0x0b, Oxdb,
Oxe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,
Oxc2,0xd3,0xac,0x62,0x91,0x95,0xed4,0x79,

150 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Oxe7,0xc8,0x37,0x6d, 0x8d,0xd5, O0x4e,0xa9,
Ox6c,0x56,0xf4, 0xea, 0x65,0x7a, 0xae, 0x08,
Oxba, 0x78, 0x25,0x2e,0x1lc, 0xa6,0xb4, 0xcé6,
Oxe8,0xdd, 0x74,0x1f, 0x4b, O0xbd, 0x8b, 0x8a,
0x70,0x3e, 0xb5,0x66,0x48,0x03,0xf6, 0x0e,
0x61,0x35,0x57,0xb9,0x86,0xcl,0x1d, 0x9e,
Oxel, 0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,
0x9b,0x1le, 0x87,0xe9, Oxce, 0x55, 0x28, 0xdf,
0x8c,0xal, 0x89,0x0d, 0xbf, Oxe6,0x42,0x68,
0x41,0x99, 0x2d,0x0f, 0xb0, 0x54, Oxbb,0x16 };

int i,k,k2,k3;
byte bitmap[0x2000];

/* show that smaller tables can be used, if desired */
for (i=0;1i<256;i++)
{

k = Sbox8[1i];
k2 = (k << 1) ~ ((k & 0x80) ? M x : 0);
k3 = k ~ k2;
assert (Sbox[0] [1i] == ((k2 << 8) ™ k3)):
assert (Sbox[1][i] == ((k3 << 8) ~ k2)):

}

/* now make sure that it's a 16-bit permutation */
memset (bitmap, 0,sizeof (bitmap)) ;
for (i=0;1<0x10000;i++)

{

k = S (i); /* do an S-box lookup: 16 --> 16 bits */
assert(k < (1 << 16));

assert ((bitmaplk >> 3] & (1 << (k & 7))) == 0);
bitmapl[k >> 3] |= 1 << (k & 7);

}
for (i=0;i<sizeof (bitmap) ;i++)
assert (bitmap[i] == OxFF);

/* if we reach here, the 16-bit Sbox is ok */
printf ("Table sanity check successfull\n");

}

fendif

/*

R R S b S S b I 2h I dh e S b I S b S SR S Ih b S b I b S SR e S b b S b S S R S b I S S S b S R S b S S b S S S b i 2 b S S b S
* Routine: Phase 1 -- generate P1K, given TA, TK, IV32

*

* Inputs:

* TK[] = Temporal Key [128 bits]
* TA[] = transmitter's MAC address [48 bits]
* V32 = upper 32 bits of IV [32 bits]
* Output:

* P1K[] = Phase 1 key [80 bits]
*

* Note:

* This function only needs to be called every 2**16 frames,

* although in theory it could be called every frame.

*

L B R I I I i I I I b I I i I I I b b I I I b b b b i b b b e b b I b b I b b b i b b b b b b b b b
*/
void Phasel (ul6eb *P1K,const byte *TK,const byte *TA,u32b IV32)

Copyright © 2004 IEEE. Al rights reserved. 151

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS
{
int 1i;
/* Initialize the 80 bits of P1K[] from IV32 and TA[O0..5] */
P1KI[O0] = Lol6(IV32);
P1K[1] = Hil6(IV32);
P1K[2] = Mk16(TA[1],TA[O0]); /* use TA[] as little-endian */
P1K[3] = Mk16(TA[3],TA[2]);
P1K[4] = Mk16(TA[5],TAT[4]);

/* Now compute an unbalanced Feistel cipher with 80-bit block */
/* size on the 80-bit block P1K[], using the 128-bit key TK[] */
for (i=0; i < PHASE1l LOOP CNT ;i++)

{ /* Each add operation here is mod 2**16 */
P1IK[0] += _S (P1K[4] ~ TKl6((i&l)+0));
P1IK[1] += _S (PI1K[0] "~ TKl6((i&l)+2));
P1K[2] += _S (PI1K[1] ~ TKl6((i&l)+4));
PIK[3] += _S (P1K[2] ~ TK16((i&l)+6));
P1K[4] += S (P1K[3] "~ TK1l6((i&l)+0));
P1K[4] += 1i; /* avoid "slide attacks" */
}
}
/*
hkhkkhkhkhkhkkhkhkhkhhkhhkhAhhkhkhhhhkhhAhhkhkhhhhkhhhrhhhkhohhkkhhkhrhhkhkhhhkkhhhrhrhkkhkhkhkhkkhkkhhkrhkhkhkhrhkhkhdxx
* Routine: Phase 2 -- generate RC4KEY, given TK, PlK, IV16
*
* Inputs:
* TK[] = Temporal Key [128 bits]
* P1KI[] = Phase 1 output key [80 bits]
* IV1e = low 16 bits of IV counter [16 bits]
* Output:
* RC4KEY[] = the key used to encrypt the frame [128 bits]
*
* Note:
* The value {TA,IV32,IV16} for Phasel/Phase2 must be unique
* across all frames using the same key TK value. Then, for a
* given value of TK[], this TKIP48 construction guarantees that
* the final RC4KEY value is unique across all frames.
*
* Suggested implementation optimization: if PPK[] is "overlaid"
* appropriately on RC4KEY[], there is no need for the final
* for loop below that copies the PPK[] result into RC4KEY[].
*

L R I i I b I I I I I b i I b I I b b I I b b i b b b I b b b b b I b b I e b b I b b b b i b b b b
*/
void Phase?2 (byte *RC4KEY,const byte *TK,const ulé6b *P1K,uléb IV16)

{

int i;

ul6b PPK[6]; /* temporary key for mixing */
/* all adds in the PPK[] equations below are mod 2**16 */

for (i=0;i<5;1i++) PPK[1]=P1K[i]; /* first, copy P1lK to PPK */
PPKI[5] = PIlK[4] + IV1e6; /* next, add in IVle */
/* Bijective non-linear mixing of the 96 bits of PPK[0..5] */
PPK[Q0] += S _(PPK[5] ~ TK16(0)); /* Mix key in each "round" */
PPK[1] += S _(PPK[0] ~ TK16(1));

PPK[2] += S (PPK[1] » TK1l6(2));

152 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004
PPK[3] += S _(PPK[2] ~ TK16(3));
PPK[4] += S _(PPK[3] ~ TK16(4));
PPK[5] += S _(PPK[4] " TK16(5)); /* Total # S-box lookups == */
/* Final sweep: bijective, linear. Rotates kill LSB correlations */

PPK[0] += RotR1 (PPK[5] » TK1l6(6)):;

PPK[1] += RoOtR1(PPK[O0] ~ TK16(7)); /* Use all of TK[] in Phase2 */

PPK[2] += RotR1(PPKI[1]):;

PPK[3] += RotR1(PPKI[2]):;
[([
[(

PPK[4] += RotR1 (PPK[3]);

PPK[5] += RotR1(PPK[4]);

/* At this point, for a given key TK[0..15], the 96-bit output */

/* value PPK[0..5] is guaranteed to be unique, as a function */
/* of the 96-bit "input" wvalue {TA,IV32,1IV16}. That is, P1K */
/* is now a keyed permutation of {TA,IV32,IV16}. */
/* Set RC4KEY[0..3], which includes cleartext portion of RC4 key */
RC4KEY[0] = Hi8(IV16) /* RC4KEY[0..2] is the WEP IV */
RC4KEY[1] =(Hi8(IV1l6) | 0x20) & Ox7F; /* Help avoid FMS weak keys */
RC4KEY[2] = Lo8(IV1e6);

RC4KEY[3] = Lo8((PPK[5] ~ TK16(0)) >> 1);

/* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */
for (i=0;1<6;1i++)
{
RC4AKEY [4+42*1] = Lo8(PPKI[i]);
RCAKEY [5+42*1] i ;
}

|
jas)
-
@

/*
R R S b S S b I 2E I dh e S Sh I S b S SR S Ib b S b I b S SR e S b I Sh S S R S b I S S S S S b S b S S b S S Sh b i 2 db S S b S
* Routine: doTestCase -- execute a test case, and print results
R R S b I S b I 2E S dh e S Sb I S b S SR S Ib b S b I b S SR e S b I Sb b S S S b I S S S S S 2 S b S S b S S S b I S dh S S b S
*/
void DoTestCase (byte *RC4KEY,u32b IV32,ulé6b IV16,const byte *TA,const byte
*TK)
{
int i;

uléb PIK[P1K SIZE/2]; /* "temp" copy of phasel key */

printf ("\nTK =");

for (i=0;i<TK SIZE;i++) printf (" %02X",TK[i]);

printf ("\nTA =");

for (i=0;i<TA SIZE;i++) printf (" $02X",TA[i]);

printf ("\nIVv32 = %08X [transmitted as",IV32); /* show byte order */
for (i=0;1i<4;i++) printf (" %02X", (IV32 >> (24-8*i)) & OxFF);
printf("1");

printf ("\nIVle = %04X",IV16);

Phasel (P1K, TK, TA, IV32);

printf ("\nP1lK =");
for (i=0;i<P1K SIZE/2;i++) printf (" %04X ",P1lK[i] & OxFFFF);

Phase2 (RC4KEY, TK, P1K, IV16) ;

printf ("\nRC4KEY= ") ;
for (i:O;i<RC4_KEY_SIZE;i++) printf ("%$02X ",RC4KEY[i]);

Copyright © 2004 IEEE. Al rights reserved. 153

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

*
i***
* Static (Repeatable) Test Cases
Ahk Ak kA Ak hkhk Ak ko kA Ak hk kA Ak kA Ak hkhkhkkhk ok hk Ak hkhk kA hkhkhk kA hkhkhkhkhkhkhkdkhkhkhkhkhkhkhkkhhkhhkkxk K%k
*/
void DoStaticTestCases (int testCnt)

{

int i,3;

byte TA[TAﬁSIZE],TK[TKisIZE],RC4KEY[RC47KEY751ZE];
uleb IV1e6=0;

u32b IV32=0;

/* set a fixed starting point */

for (i=0;i<TK SIZE;i++) TK[i]=i;

for (i=0;i<TA SIZE;i++) TA[i]=(i+1)*17;

TA[O0] = TA[O] & OxFC; /* Clear I/G and U/L bits in OUI */

/* now generate tests, feeding results back into new tests */

for (i=0; i<testCnt/2; i++)
{
printf ("\n\nTest vector #%d:",2*i+1);
DoTestCase (RC4KEY, IV32,1IV16,TA,TK) ;
IV16++; /* emulate per-frame "increment" */
if (IV1ie == 0) IV32++;
printf ("\n\nTest vector #%d:",2*i+2);
DoTestCase (RC4KEY, IV32,1IV16,TA, TK) ;

/* feed results back to seed the next test input values */
IVl6 = (i) ? Mk16(RC4KEY[15],RC4KEY[4]) : OxXFFFF;/* force wrap */
V32 = Mk16 (RCAKEY[14],RC4KEY[5]);

Iv32 = Mk16 (RCAKEY[13],RC4KEY[7]) + (IV32 << 16);

for (j=0;J<TA SIZE;j++) TA[j]"=RC4KEY[12-3];
for (j=0;3j<TK SIZE;j++) TK[J] =RC4KEY[(j+i+1)
RCAKEY [(j+1+7)

RC4 KEY SIZE] *
RC4 KEY SIZE] ;

o
©
o
°

TA[O] = TA[0] & OxFC; /* Clear I/G and U/L bits in OUI */
}
/* comparing the final output is a good check of correctness */

printf ("\n");
}

/*
AA A kA Ak A AR hA A Ak kA A Ak kA kA A kA kA Ak hk Ak kA hkhk Ak hk bk hkdAhk kA hhkrhkhkhkhkhkhkhkrhkkhkhkrhkkhkhkkkxkk*x

* Test Cases Generated at Random
L R I I b i I I I I b i I b I I b I b I b b b b b b b I I b b b b b I b b b I b b i b b b b 2 b b b b b

*/
void DoRandomTestCases (int testCnt)
{
int i,73;
uleb IV16;
u32b IV32;
byte TA[TA_SIZE],RC4KEY[RC4_KEY_SIZE],TK[TK_SIZE];

printf ("Random tests:\n");
/* now generate tests "recursively" */
for (i=0; i<testCnt; i++)

{

IV1le rand() & OxFFFF;

IV32 = rand() + (rand() << 16);

154 Copyright © 2004 IEEE. All rights reserved.

IEEE

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

for (3=0;J<TK SIZE;j++) TK[j]=rand() & OxFF;
for (3=0;3<TA_SIZE;j++) TA[j]=rand() & OxFF;
TA[0] = TA[O] & OxFC; /* Clear I/G and U/L bits in OUI */
printf ("\n\nRandom test vector #%d:",i+1);
DoTestCase (RC4KEY, IV32,1IV16,TA, TK) ;
}

printf ("\n");

}

/*

AA A kA Ak A AR A A kA A Ak kA Ak A A kA kA Ak k Ak h Ak kA hkhkhkhk Ak kA hkhkrhkhkhkhhAhkhkrhkkhkhkrhkkhkhdkkxkk*x

* Usage text
hkhkhkhkhkhkkhkhkhkhhkhhkhhhhkhkhhhkhhhhkhhhbhhkhhhrhkhhkhrhhkhhkhrhhkhhhhkkhdhhrhrhkhkhkhkhkkhkkhhkrhkkhkhkhrhkhkhdxx

*/
#define NUM TEST CNT 8
void Usage (void)

{

printf (
"Usage: TKIP48 [options]\n"
"Purpose: Generate test vectors for IEEE 802.11 TKIP48\n"
"Options =7 -- output this usage text\n"
" -r -- generate test vectors at random\n"
" -sN -- init random seed to N\n"
" -tN -- generate N tests (default = %d)\n",

NUM_TEST CNT
) ;

exit (0);

}

/*
Ak hkhkhkhkhkhhhhhkhkhrhkhhkh bk bk h bk hkr kb hhhkhkr kb hkhkhkhkhkhkhkr kb kb hkhkrhkhkrhkhkhkhkhkhkhkrkhdxkkkxk
* Main

Ak hkhkhk kA hkhkkhk kA hkhkhkrhkh kA hkhkhk kA hkhkhkhkhkhkhk kA hhkhhkhkhkhkhkhkhhkhkhkhkhkhhkhkhkhkhkkhkhkhkhkhhkhhkhkkxkhxk*k
*/

int main(int argc, char **argv)

char *parg;

int i,doRand = 0;
int testCnt = NUM TEST CNT;
u32b seed = (u32b) time (NULL) ;

#if DO_SANITY CHECK
SanityCheckTable () ;
#endif

for (i=1; i<argc; i++)
{
parg = argv[i];
switch (parg([0])
{
case '-':
switch (pargl[l])
{

case '?':
case 'H':
case 'h':
Usage () ;
return 0;
case 'R':

Copyright © 2004 IEEE. Al rights reserved. 155

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

case 'r': /* generate some random test vectors */
doRand = 1;
break;
case 'S':
case 's':
seed = atoi (pargt2);
break;
case 'T':
case 't':
testCnt = atoi (parg+2);
break;
default:
break;
}
break;
case '?':
Usage () ;
return 0;
default:
printf ("Invalid argument: \"%$s\"\n", pargqg);
return 1;

}
srand (seed) ;
if (doRand) printf ("Seed = %u\n",seed);

/* generate some test vectors */
if (doRand) DoRandomTestCases (testCnt);
else DoStaticTestCases (testCnt) ;

return 0;

}

H.1.1 Test vectors

The following output is provided to test implementations of the temporal key hash algorithm. All input and
output values are shown in hexadecimal.

Test vector #1:

TK = 00 01 02 03 04 05 06 07 08 09 0A OB OC 0D OE OF [LSB on left, MSB on right]
TA = 10-22-33-44-55-66

PN = 000000000000

Iv32 = 00000000

IvVvlie = 0000

P1K = 3DD2 O0l6E 76F4 8697 B2ES

RC4KEY= 00 20 00 33 EA 8D 2F 60 CA 6D 13 74 23 4A 66 OB

Test vector #2:

TK = 00 01 02 03 04 05 06 07 08 09 0A OB OC 0D OE OF [LSB on left, MSB on right]
TA = 10-22-33-44-55-66

PN = 000000000001

Iv32 = 00000000

IVie = 0001

P1K = 3DD2 O0l6E 76F4 8697 B2ES

RC4KEY= 00 20 01 90 FF DC 31 43 89 A9 D9 DO 74 FD 20 AA

Test vector #3:

TK = 63 89 3B 25 08 40 B8 AE OB DO FA 7E 61 D2 78 3E [LSB on left, MSB on right]
TA = 64-F2-EA-ED-DC-25
PN = 20DCFD43FFFF

156 Copyright © 2004 IEEE. All rights reserved.

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS

IV32
IV1l6
P1K
RC4KEY

20DCFD43

FFFF

7C67 49D7 9724
FF 7F FF 93 81 OF

Test vector #4:

TK
TA =
PN =
Iv32 =
IV1l6
P1K =
RC4KEY=

= 63 89 3B 25 08 40

64-F2-EA-ED-DC-25
20DCFD440000
20DCFD44

0000

5A5D 73A8 A859
00 20 00 49 8C A4

Test vector #5:

TK =
TA =
PN

IV32
IV1le
P1K
RC4KEY=

98 3A 16 EF 4F AC
50-9C-4B-17-27-D9

= FOA410FC058C

FOA410FC
058C

= F2DF EBB1 88D3

05 25 8C F4 D8 51

Test vector #6:

TK
TA =
PN

IV32
IV1le
P1K =
RC4KEY

= 98 3A 16 EF 4F AC

50-9C-4B-17-27-D9

= FOA410FC058D

FOA410FC

058D

F2DF EBB1 88D3
05 25 8D 09 F8 15

Test vector #7:

TK
TA =
PN =
Iv32 =
IVlie =
P1K =
RC4KEY=

= C8 AD Cl 6A 8B 4D

94-5E-24-4E-4D-6E
8B1573B730F8
8B1573B7

30F8

EFF1 3F38 A364
30 30 F8 65 0D A0

Test vector #8:

TK =
TA =
PN

IV32
IV1le
P1K
RC4KEY=

C8 AD Cl 6A 8B 4D
94-5E-24-4E-4D-6E

= 8B1573B730F9

8B1573B7
30F9

= EFFl1 3F38 A364

30 30 F9 31 55 CE

B5E9
Cé E5

B8 AE

2EC1

71 FC

B3 51

5923

52 F4

B3 51

5923

43 B7

DA 3B

60A9

73 EA

DA 3B

60A9
29 34

B4F1
8F 5D

0B DO

DC8B

FB FA

AA 9E

AQ7C

D9 AF

AA 9E

AQ7C

6A 59

4D D5

T6F3

61 4E

4D D5

T6F3
37 CC

D3

FA

Al

ccC

1A

ccC

6F

B6

A8

B6

76

26

TE

6E

27

64

27

C2

54

F4

54

71

25

61

36

1D

Fl

1D

cé

38

74

38

27

15

D2

10

73

DO

73

73

35

EE

35

16

44

78

FO

09

70

09

8B

9B

03

9B

AB

CE

3E

05

E2

21

E2

30

05

19

05

8F

IEEE
Std 802.11i-2004

[LSB on left, MSB on right]

[LSB on left, MSB on right]

[LSB on left, MSB on right]

[LSB on left, MSB on right]

[LSB on left, MSB on right]

H.2 Michael reference implementation and test vectors

H.2.1 Michael test vectors

To ensure correct implementation of Michael, here are some test vectors. These test vectors still have to be
confirmed by an independent implementation.

H.2.1.1 Block function

Table H.1 gives some test vectors for the block function.

Copyright © 2004 IEEE. All rights reserved.

157

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Table H.1—Test vectors for block function

Input # times Output

(00000000, 00000000) 1 (00000000, 00000000)

(00000000, 00000001)

(c00015a8, c0000b95)

(00000001, 00000000)

(6b519593, 572b8b8a)

(01234567, 83659326)

(441492c2, 1d8427ed)

(00000001, 00000000) 1000 (9104c4ad, 2ec6c2bf)

The first four rows give test vectors for a single application of the block function b. The last row gives a test
vector for 1000 repeated applications of the block function. Together these should provide adequate test
coverage.

H.2.1.2 Michael

Table H.2 gives some test vectors for Michael.

Table H.2—Test vectors for Michael

Key Message Output
0000000000000000 " 82925clcald130b8
82925c1cald130b8 "M” 434721ca40639b3f
434721ca40639b3f "Mi “ e8f9becaec97e5d29
E8f9becaec97e5d29 "Mic" 90038fcoef13cldb
90038fcoefl3c1db "Mich" D55e100510128986
D55e100510128986 "Michael" 0a942b124ecaa546

Note that each key is the result of the previous line, which makes it easy to construct a single test out of all
of these test cases.

H.2.2 Sample code for Michael

//

// Michael.h Reference implementation for Michael

//

// A Michael object implements the computation of the MIC.
//

// Conceptually, the object stores the message to be authenticated.

// At construction the message is empty.

// The append() method appends bytes to the message.

// The getMic () method computes the MIC over the message and returns the
// result.

158 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

// As a side-effect it also resets the stored message
// to the empty message so that the object can be re-used
// for another MIC computation.

class Michael

{

public:
// Constructor requires a pointer to 8 bytes of key
Michael (Byte * key);

// Destructor
~Michael () ;

// Clear the internal message,
// resets the object to the state just after construction.
void clear();

// Set the key to a new value
void setKey(Byte * key);

// Rppend bytes to the message to be MICed
void append(Byte * src, int nBytes);

// Get the MIC result. Destination should accept 8 bytes of result.
// This also resets the message to empty.
void getMIC(Byte * dst);

// Run the test plan to verify proper operations
static void runTestPlan();

private:
// Copy constructor declared but not defined,
//avoids compiler—-generated version.
Michael (const Michael &);
// Assignment operator declared but not defined,
//avoids compiler-generated version.
void operator=(const Michael &);

// A bunch of internal functions

// Get UInt32 from 4 bytes LSByte first
static UInt32 getUInt32(Byte * p);

// Put UInt32 into 4 bytes LSByte first
static void putUInt32(Byte * p, UInt32 val);

// Add a single byte to the internal message
void appendByte(Byte b);

// Conversion of hex string to binary string
static void hexToBin(char *src, Byte * dst);

// More conversion of hex string to binary string
static void hexToBin(char *src, int nChars, Byte * dst);

// Helper function for hex conversion
static Byte hexToBinNibble (char c);

Copyright © 2004 IEEE. Al rights reserved. 159

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

160

// Run a single test case
static void runSingleTest (char * cKey, char * cMsg, char * cResult);

UInt32 KO, KI1; // Key
UInt32 L, R; // Current state
UInt32 M; // Message accumulator (single word)
int nBytesInM; // # bytes in M
bi
//
// Michael.cpp Reference implementation for Michael
//

// Adapt these typedefs to your local platform
typedef unsigned long UInt32;
typedef unsigned char Byte;

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "Michael.h"

// Rotation functions on 32 bit values
#define ROL32(A, n) \

(((A) << (n)) | (((A)>>(32-(n))) & ((UL << (n)) - 1)))
#define ROR32(A, n) ROL32((&), 32-(n))

UInt32 Michael::getUInt32(Byte * p)
// Convert from Byte[] to UInt32 in a portable way
{

UInt32 res = 0;

for(int i=0; i<4; i++)

{

res |= (*pt++) << (8*1);
}

return res;

void Michael::putUInt32(Byte * p, UInt32 val)
// Convert from UInt32 to Byte[] in a portable way
{
for(int i=0; i<4; i++)
{
*p++ = (Byte) (val & Oxff);
val >>= 8;

void Michael::clear ()

{
// Reset the state to the empty message.

L = KO;

R = K1;
nBytesInM = 0;
M = 0;

Copyright © 2004 IEEE. All rights reserved.

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS

void Michael::setKey(Byte * key)
{
// Set the key
KO = getUInt32(key);
K1 = getUInt32(key + 4);
// and reset the message
clear () ;

Michael: :Michael (Byte * key)
{
setKey (key);

Michael: :~Michael ()

{
// Wipe the key material
KO = 0;
K1 = 0;

// And the other fields as well.

//Note that this sets (L,R) to (KO0,K1l) which is just fine.

clear () ;

void Michael::appendByte(Byte b)
{
// Append the byte to our word-sized buffer
M |= b << (8*nBytesInM);
nBytesInM++;
// Process the word if it is full.
if (nBytesInM >= 4)
{

L ~= M;

R *= ROL32(L, 17);
L += R;

R *= ((L & Oxff00ff00) >> 8) | ((L & OxOO0ff00ff)
L += R;

R *= ROL32(L, 3);
L += R;

R "= ROR32(L, 2);
L += R;

// Clear the buffer
M = 0;

nBytesInM = 0;

void Michael::append(Byte * src, int nBytes)
{

// This is simple

while (nBytes > 0)

{
appendByte (*srct++);
nBytes--;

void Michael::getMIC(Byte * dst)

Copyright © 2004 IEEE. All rights reserved.

IEEE
Std 802.11i-2004

161

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

// Append the minimum padding
appendByte (0x5a);
appendByte (0);
appendByte(0);
appendByte (0);
appendByte(0);
// and then zeroes until the length is a multiple of 4
while(nBytesInM != 0)
{
appendByte (0);
}
// The appendByte function has already computed the result.
putUInt32(dst, L);
putUInt32(dst+4, R);
// Reset to the empty message.
clear () ;

void Michael::hexToBin(char *src, Byte * dst)
{

// Simple wrapper

hexToBRin(src, strlen(src), dst);

void Michael::hexToBin(char *src, int nChars, Byte * dst)

{
assert((nChars & 1) ==) ;
int nBytes = nChars/2;

// Straightforward conversion
for(int i=0; i<nBytes; i++)
{
dst[i] = (Byte) ((hexToBinNibble (src[0]) << 4) |
hexToBinNibble (src[1l]));
src += 2;

Byte Michael: :hexToBinNibble (char c)

{
if('0' <= c & c <= "'9"'")

return (Byte) (¢ - '0');
}
// Make it upper case
c &= ~('a'-'A");

assert('"A' <= c¢c && c <= "F');
return (Byte) (¢ - 'A' + 10);

void Michael::runSingleTest (char * cKey, char * cMsg, char * cResult)
{

Byte key[8 1;

Byte result|[8 1;

Byte res[8];

// Convert key and result to binary form

162 Copyright © 2004 IEEE. All rights reserved.

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS

hexToBin (cKey, key);
hexToBin(cResult, result);

// Compute the MIC value

Michael mic(key);

mic.append((Byte *)cMsg, strlen(cMsg));
mic.getMIC(res);

// Check that it matches
assert (memcmp (res, result, 8) ==)

void Michael::runTestPlan ()

// As usual, test plans can be quite tedious but this should

// ensure that the implementation runs as expected.
{

Byte key[8] ;

Byte msg[l1l2];

int 1i;

// First we test the test vectors for the block function

// The case (0,0)
putUInt32(key, 0);
putUInt32(key+4, 0);
putUInt32(msg, 0);

Michael mic(key);
mic.append(msg, 4);

assert(mic.L == 0 && mic.R == 0);

// The case (0,1)
putUInt32(key, 0);
putUInt32(key+4, 1);
mic.setKey(key);
mic.append(msg, 4);

assert(mic.L == 0xc00015a8 && mic.R == 0xc0000b95

// The case (1,0)
putUInt32(key, 1);
putUInt32(key+4, 0);
mic.setKey(key);
mic.append(msg, 4);

assert(mic.L == 0x6b519593 && mic.R == 0x572b8b8a

// The case (01234567, 83659326)
putUInt32(key, 0x01234567);
putUInt32 (key+4, 0x83659326);
mic.setKey(key);

mic.append(msg, 4);

assert(mic.L == 0x441492c2 && mic.R == 0x1d8427ed);

// The repeated case
putUInt32(key, 1);
putUInt32 (key+4,0);

Copyright © 2004 IEEE. All rights reserved.

IEEE
Std 802.11i-2004

163

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

mic.setKey(key);
for(i=0; 1<1000; i++)
{
mic.append(msg, 4);

assert(mic.L == 0x9f04cd4ad && mic.R == 0x2eco6c2bf);

// And now for the real test cases

runSingleTest ("0000000000000000™, ™" , "82925clcaldl30b8");
runSingleTest ("82925clcaldl30bg8", "M" , "434721cad40639p3f") ;
runSingleTest ("434721cad40639p3f"™, "Mi" , "e8f%ecae97e5d29");
runSingleTest ("e8f9%ecae97e5d29", "Mic" , "90038fcocfll3cldb");
runSingleTest ("90038fc6cfl3cldb", "Mich" , "d55e100510128986") ;
runSingleTest ("d55e100510128986", "Michael"™ , "0a942bl24ecaa546");

H.3 PRF reference implementation and test vectors

H.3.1 PRF reference code

/*
* PRF -- Length of output is in octets rather than bits
* since length is always a multiple of 8 output array is
* organized so first N octets starting from 0 contains PRF output
*
* supported inputs are 16, 24, 32, 48, 64
* output array must be 80 octets to allow for shal overflow
*/
void PRF (

unsigned char *key, int key len,
unsigned char *prefix, int prefix len,
unsigned char *data, int data len,
unsigned char *output, int len)

int 1i;

unsigned char input[1024]; /* concatenated input */
int currentindex = 0;

int total len;

memcpy (input, prefix, prefix len);
input[prefix len] = 0; /* single octet 0 */
memcpy (&input [prefix len+l], data, data len);
total len = prefix len + 1 + data len;
input[total len] = 0; /* single octet count, starts at 0 */
total len++;
for (i = 0; 1 < (len+19)/20; 1i++) {
hmac shal (input, total len, key, key len,
&output [currentindex]) ;
currentindex += 20;/* next concatenation location */
input[total len-1]++; /* increment octet count */

164 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

H.3.2 PRF test vectors

Test case 1

Key 0x0b

Key length20

Prefix “prefix”

Prefix length6

Data "Hi There"

Data length8

PRF-512 0xbcd4c650b30b9684951829e0d75£9d54
0xb862175ed9f00606e17d8dal35402ffee
0x75df78c3d31e0£889f012120c0862beb
0x67753e743%9ae242edb8373698356¢cf5a

Test case 2

Key "Jefe"

Key length4

Prefix “prefix”

Prefix length6

Data "what do ya want for nothing?"

Data length28

PRF-512 0x51f4de5b33f249%9adf8laeb713a3c20£f4
0xfe631446fabdfa5824475%9ae58e£9009
Oxa99%abfdeac2cab5fa87e692c440eb4002
0x3e7babb206d61de7b92£41529092b8fc

Test case 3

Key Oxaa

Key length20

Prefix “prefix”

Prefix length6

Data 0xdd repeated 50 times

Data length50

PRF-5120xelac546ec4cb636£9976487be5c86bel
0x7a0252ca5d8d8df12cfb0473525249ce
0x9dd8d177ead710bc9b590547239107ae
0xf7b4abd43d87£f0a68flcbd9e2b6£7607

H.4 Suggested pass-phrase-to-PSK mapping

H.4.1 Introduction

The RSNA PSK consists of 256 bits, or 64 octets when represented in hex. It is difficult for a user to cor-
rectly enter 64 hex characters. Most users, however, are familiar with passwords and pass-phrases and feel
more comfortable entering them than entering keys. A user is more likely to be able to enter an ASCII pass-
word or pass-phrase, even though doing so limits the set of possible keys. This suggests that the best that can
be done is to introduce a pass-phrase to PSK mapping.

This clause defines a pass-phrase—to—PSK mapping that is the recommended practice for use with RSNAs.
This pass-phrase mapping was introduced to encourage users unfamiliar with cryptographic concepts to
enable the security features of their WLAN.

A pass-phrase typically has about 2.5 bits of security per character, so the pass-phrase mapping converts an
n octet password into a key with about 2.5n + 12 bits of security. Hence, it provides a relatively low level of
security, with keys generated from short passwords subject to dictionary attack. Use of the key hash is rec-
ommended only where it is impractical to make use of a stronger form of user authentication. A key gener-
ated from a pass-phrase of less than about 20 characters is unlikely to deter attacks.

Copyright © 2004 IEEE. Al rights reserved. 165

IEEE

Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

The pass-phrase mapping defined in this subclause uses the PBKDF2 method from PKCS [B16].

PSK = PBKDF2(PassPhrase, ssid, ssidLength, 4096, 256)

Here, the following assumptions apply:

A pass-phrase is a sequence of between 8 and 63 ASCII-encoded characters. The limit of 63 comes
from the desire to distinguish between a pass-phrase and a PSK displayed as 64 hexadecimal
characters.

Each character in the pass-phrase must have an encoding in the range of 32 to 126 (decimal),
inclusive.

ssid is the SSID of the ESS or IBSS where this pass-phrase is in use, encoded as an octet string used
in the Beacon and Probe Response frames for the ESS or IBSS.

ssidLength is the number of octets of the ssid.
4096 is the number of times the pass-phrase is hashed.
256 is the number of bits output by the pass-phrase mapping.

H.4.2 Reference implementation

166

/*
* F(P, S, c, 1) Ul xor U2 xor ... Uc
* Ul = PRF(P, S || Int(i))

\
* U2 = PRF(P, Ul)
* Uc = PRF(P, Uc-1)
*/

void F(
char *password,
unsigned char *ssid,
int ssidlength,
int iterations,
int count,
unsigned char *output)

unsigned char digest[36], digestl[A SHA DIGEST LEN];
int 1, J;

for (i = 0; i < strlen(password); i++) {
assert ((password[i] >= 32) && (password[i] <= 126));

/* Ul = PRF(P, S || int(i)) */

memcpy (digest, ssid, ssidlength);

digest[ssidlength] = (unsigned char) ((count>>24) & Oxff);

digest[ssidlength+l] = (unsigned char) ((count>>16) & O0xff);

digest[ssidlength+2] = (unsigned char) ((count>>8) & O0xff);

digest[ssidlength+3] = (unsigned char) (count & 0xff);

hmac shal (digest, ssidlength+4, (unsigned char*) password,
(int) strlen(password), digest, digestl);

/* output = Ul *x/
memcpy (output, digestl, A SHA DIGEST LEN);

for (i = 1; 1 < iterations; i++) {
/* Un = PRF(P, Un-1) */

Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

hmac_shal (digestl, A SHA DIGEST LEN, (unsigned char*) password,
(int) strlen(password), digest);
memcpy (digestl, digest, A SHA DIGEST LEN) ;

/* output = output xor Un */
for (j = 0; j < A _SHA DIGEST LEN; Jj++) {
output[j] 7*= digest[j];

* password - ascii string up to 63 characters in length
* ssid - octet string up to 32 octets
* gssidlength - length of ssid in octets
* output must be 40 octets in length and outputs 256 bits of key
*/
int PasswordHash (
char *password,
unsigned char *ssid,
int ssidlength,
unsigned char *output)

if ((strlen(password) > 63) || (ssidlength > 32))
return 0;

F(password, ssid, ssidlength, 4096, 1, output);

F(password, ssid, ssidlength, 4096, 2,
&output [A SHA DIGEST LEN]);

return 1;

H.4.3 Test vectors

Test case 1

Passphrase = “password”

SSID = { \II, \EI, \EI’ R/ }

SSIDLength = 4

PSK = f42c6fc52df0ebef9ebbdb90b38a5f90 2e83felbl35a70e23aed762e9710al2e

Test case 2

Passphrase = “ThisIsAPassword”

SSID = { \TI, \hl, \il, \SI, \II, ‘S,, \AI, \SI, \SI, \II, \DI }
SSIDLength = 11

PSK = 0dc0d6eb90555ed6419756b9% l15ec3e3 209b63df707dd508d14581£8982721af

Test case 3

Password = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’”

SSID = {\ZI,\ZI,\ZI,\ZI, \ZI,\ZI,\ZI,\ZI, \ZI,\ZI,\ZI,\ZI, \ZI,\ZI,\ZI,\ZI,
\ZI,\ZI,\ZI,\ZI, \ZI,\ZI,\ZI,\ZI, \ZI,\ZI,\ZI,\ZI,\ZI,\ZI,\ZI,\ZI}

SSIDLength = 32

PSK = becb93866bb8c3832cb777c2£559807¢c 8c59afcb6eae734885001300a981cc62

H.5 Suggestions for random number generation

In order to properly implement cryptographic protocols, every platform needs the ability to generate
cryptographic-quality random numbers. IETF RFC 1750 explains the notion of cryptographic-quality ran-
dom numbers and provides advice on ways to harvest suitable randomness. It recommends sampling

Copyright © 2004 IEEE. Al rights reserved. 167

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

multiple sources, each of which contains some randomness, and by passing the complete set of samples
through a PRF. By following this advice, an implementation can usually collect enough randomness to dis-
till into a seed for a PRNG whose output will be unpredictable.

This clause suggests two sample techniques that can be combined with the other recommendations of IETF
RFC 1750 to harvest randomness. The first method is a software solution that can be implemented on most
hardware; the second is a hardware-assisted solution. These solutions are expository only, to demonstrate
that it is feasible to harvest randomness on any IEEE 802.11 platform. They are not mutually exclusive, and
they do not preclude the use of other sources of randomness when available, such as a noisy diode in a
power circuit; in this case, the more the merrier. As many sources of randomness as possible should be gath-
ered into a buffer, and then hashed, to obtain a seed for the PRNG.

H.5.1 Software sampling

Due to the nature of clock circuits in modern electronics, there will be some lack of correlation between two
clocks in two different pieces of equipment, even when high-quality crystals are used—crystal clocks are
subject to jitter, noise, drift, and frequency mismatch. This randomness may be as little as the placement of
the clock waveform edges. Even if one entity were to attempt to synchronize itself to another entity’s clock,
the correlation cannot be perfect due to noise and uncertainties of the synchronization.

Two clock circuits in the same piece of equipment may synchronize in frequency, but again the correlation
will not be perfect due to the noise and jitter of the circuits.

The randomness between the two clocks may not be much per sample—a tenth of a bit or less—but enough
samples may be collected to gather enough randomness to form a seed.

A device can use software methods to take advantage of this lack of synchronization, to collect randomness
from different sources. As an example, an AP might measure the frame arrival times on Ethernet wireless
ports. There is always some amount of traffic on modern Ethernets: ARPs, DHCP requests, NetBIOS adver-
tisements, etc. The sample algorithm in this subclause uses this traffic. In the example, an AP obtains ran-
domness from the available traffic. If Ethernet traffic is available, the AP utilizes that for a source of
randomness. Otherwise, it waits for the first association and creates traffic from which it can obtain
randomness.

The clocks used to time the frames should be the highest resolution available, preferable 1 ms resolution or
better. The clock used to time frame arrival should not be related to the clock used for frame serialization.

Initialize result to empty array
LoopCounter = 0
Wait until Ethernet traffic or association
Repeat until global key counter "random enough" or 32 times {
result = PRF-256(0, "Init Counter",
Local Mac Address || Time || result || LoopCounter)
LoopCounter++
Repeat 32 times {
If Ethernet traffic available then {
Take lowest byte of time when Ethernet packet is seen
Concatenate the seen time onto result
}else {
Start 4-Way Handshake; after receipt of Message 2, deauthenticate
Take lowest byte of time of when Message 1 is sent
Take lowest byte of time of when Message 2 is received
Take lowest byte of RSSI from Message 2

168 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Take SNonce from Message 2
Concatenate the sent time; receive time, RSSI and SNonce onto result

}
Global key counter = result = PRF-256(0, "Init Counter",

Local Mac Address || Time || result || LoopCounter)

NOTE—The Time may be 0 if it is not available.

H.5.2 Hardware-assisted solution
The sample implementation in this subclause uses hardware ring oscillators to generate randomness, as

depicted in Figure H.1.

Ring Oscillators

“; ; 19 total ; “;
I: [23 total ﬂ{ |
T

> /\/ 29 total % |
|

Other Source of
Randamness (if

available)
‘ J 8, 160132
Clock 8, 16 or 32
LFSR

Figure H.1—Randomness generating circuit

The circuit in Figure H.1 generates randomness. The clock input should be about the same frequency as the
ring oscillator’s natural frequencies. The LFSR should be chosen to be one that is maximal length. Sample
LFSRs can be found in Arazi [B11].

The three ring oscillators should be isolated from each other as much as possible to avoid harmonic locking
between them. In addition, the three ring oscillators should not be near any other clock circuitry within the
system to avoid these ring oscillators’ locking to system clocks. The oscillators should be tested to ensure
that their output is not correlated.

Copyright © 2004 IEEE. Al rights reserved. 169

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

The output of the LFSR is read by software and concatenated until enough randomness is collected. As a
rule of thumb, reading from the LFSR 8 to 16 times the number of bits as the desired number of random bits
is sufficient.

Initialize result to empty array
Repeat 1024 times {
Read LFSR
result = result | LFSR
Wait a time period

H
Global key counter = PRF-256(0, "Init Counter", result)

H.6 Additional test vectors

H.6.1 Notation

In the examples in H.6, frames are represented as a stream of octets, each octet in hex notation, sometimes
with text annotation. The order of transmission for octets is left to right, top to bottom. For example, con-
sider the following representation of a frame in Table H.3.

Table H.3—Notation example

Description #1 0001 02 03
04 05
Description #2 06 07 08

The frame consists of 9 octets, represented in hex notation as “00”, “01”, ..., “08”. The octet represented by
“00” is transmitted first, and the octet represented by “08” is transmitted last. Similar tables are used for
other purposes, such as describing a cryptographic operation.

In the text discussion outside of tables, integer values are represented in either hex notation using a “0x” pre-
fix or in decimal notation using no prefix. For example, the hex notation 0x12345 and the decimal notation
74565 represent the same integer value.

H.6.2 WEP encapsulation

The discussion in this subclause represents an RC4 encryption using a table that shows the key, plaintext
input, and cipher text output. The MPDU data, prior to WEP encapsulation, is shown in Table H.4.

Table H.4—Sample plaintext MPDU

MPDU data aa aa 03 00 00 00 08 00 45 00 00 4e 66 la 00 00 80 11 be 64 0Oa 00
01 22 Oa ff f£ff ££f 00 89 00 89 00 3a 00 00 80 a6 01 10 00 01 00 0O
00 00 00 00 20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45 49 45
46 46 43 43 41 43 41 43 41 43 41 43 41 41 41 00 00 20 00 01

170 Copyright © 2004 IEEE. All rights reserved.

AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS

RC4 encryption is performed as shown in Table H.5.

Table H.5—RC4 encryption

IEEE
Std 802.11i-2004

Key

fb

02

9e

30

31

32

33

34

Plaintext

aa

00
45
00

aa
01
00
49
01

03
22
00
45
1b

00
O0a
00
46
do

00
ff
00
46
b6

00
ff
00
43
04

08
ff
20
43

00
00
45
41

45
89
43
43

00

45
41

00

4a
43

de
00
45
41

66
3a
48
43

la
00
45
41

00

43
43

00

46
41

80
a6
43
41

11
01
45
41

be
10
50
00

64
00
46
00

Oa
01
45
20

Ciphertext

fo
f6
42
la
bf

9¢c
4d
fc
5d
Oe

58
5f
ce
6f
2a

06
58
14
58
2c

bd
ab
1d
f4
as

6C
03
48
10
£7

e8
a2
5f
40

46
58
8a
b2

26
b7
a8
4b

bc
ed

7d

be
22
de
la

fb
eb
al
69

94
Oe
8d
38

74
a6
f4
56

65
49
2c
ed

Oa
30
53
0d

ad
d3

43

1f
a0

98

79
56
S5a
e’

09
ab
do
ae

b0
57
c6
e3

The plaintext consists of the MPDU data, followed by a 4-octet CRC-32 calculated over the MPDU data.

The expanded MPDU, after WEP encapsulation, is shown in Table H.6.

Table H.6—Expanded MPDU after WEP encapsulation

v fb 02 9e 80

MPDU | £f6 9¢c 58 06 bd 6¢c €8 46 26 bc be fb 94 74 65 0a ad 1f 79 09 b0 f6 4d 5f

data 58 a5 03 a2 58 b7 ed 22 eb 0e a6 49 30 d3 a0 56 a5 57 42 fc ce 14 1d 48
5f 8a a8 36 de al 8d f4 2c 53 80 80 5a d0 c6 la 5d 6f 58 £4 10 40 b2 4b
7d 1la 69 38 56 ed 0d 43 98 e7 ae e3 bf Qe

ICV 2a 2c a8 f7

The IV consists of the first 3 octets of the RC4 key, followed by an octet containing the Key ID value in the
upper 2 bits. In this example, the Key ID value is 2. The MPDU data consists of the cipher text, excluding
the last 4 octets. The ICV consists of the last 4 octets of the cipher text, which is the encrypted CRC-32

value.

H.6.3 TKIP test vector

An example of a TKIP MSDU is provided in Table H.7 and Table H.8. The key and PN are used to create
the IV, Phasel, and Phase2 keys.

Table H.7—Sample TKIP parameters

Key 12 34 56 78 90 12 34 56 78 90 12 34 56 78 90 12
34 56 78 90 12 34 56 78 90 12 34 56 78 90 12 34
PN 0x000000000001

Copyright © 2004 IEEE. All rights reserved.

171

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Table H.7—Sample TKIP parameters (continued)

v 00 20 01 20 00 00 00 00
Phasel bb 58 07 1f 9e 93 b4 38 25 4b
Phase2 00 20 01 4c fe 67 be d2 7c 86 7b 1lb £8 02 8b 1lc

Table H.8—Sample plaintext and ciphertext MPDUs, using parameter from Table H.7

Plaintext MPDU 08 42 2c 00 02 03 04 05 06 08 02 03 04 05 06 07
with TKIP MIC 02 03 04 05 06 07 d0O 02 00 20 01 20 00 00 00 OO
aa aa 03 00 00 00 08 00 45 00 00 54 00 00 40 00
40 01 a5 55 c0 a8 0a 02 cO0 a8 0a 01 08 00 3a b0
00 00 00 00 cd 4c 05 00 00 00 00O 0O 08 09 0Oa 0b
Oc 0d 0Oe 0f 10 11 12 13 14 15 16 17 18 19 l1la 1b
lc 1d 1le 1f 20 21 22 23 24 25 26 27 28 29 2a 2b
2c 2d 2e 2f 30 31 32 33 34 35 36 37 68 81 a3 f3
dée 48 dO0 3c

Encrypted MPDU 08 42 2c 00 02 03 04 05 06 08 02 03 04 05 06 07
with MIC and ICV | 02 03 04 05 06 07 40 02 00 20 01 20 00 00 00 0O
cO Oe 14 fc e7 cf ab c7 75 47 e6 66 e5 7c 0d ac
70 4a le 35 8a 88 cl 1lc 8e 2e 28 2e 38 01 02 7a
46 56 05 5e e9 3e 9c 25 47 02 €9 73 58 05 dd b5
76 9b a7 3f le bb 56 e8 44 ef 91 22 85 d3 dd 6e
54 1le 82 38 73 55 8a db a0 79 06 8a bd 7f 7f 50
95 96 75 ac c4 b4 de 9a a9 9c 05 f2 89 a7 c5 2f
ee 5b fc 14 fo f8 e5 f8

H.6.4 CCMP test vector

==== CCMP test mpdu ====

-- MPDU Fields

Version 0

Type =2 SubType 0 Data
ToDS =0 FromDS =0
MoreFrag = 0 Retry =1
PwrMgt =0 moreData = 0
Encrypt =1

Order =0

Duration = 11459

Al = 0f-d2-el-28-a5-7c DA

A2 = 50-30-f1-84-44-08 SA

A3 = ab-ae-a5-b8-fc-ba BSSID

SC = 0x3380
segNum = 824 (0x0338) fragNum = 0 (0x00)
Algorithm = AES CCM

Key ID = 0
TK = c9 7c 1f 67 ce 37 11 85 51 4a 8a 19 f2 bd d5 2f
PN = 199027030681356 (0xB5039776E70C)

802.11 Header =08 48 c3 2c 0f d2 el 28 a5 7c 50 30 f1 84 44 08 ab ae a5 b8 fc ba
80 33

172 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Muted 802.11 Header =08 40 0f d2 el 28 a5 7c 50 30 f1 84 44 08 ab ae ab b8 fc ba
00 00

CCMP Header =0c e7 00 20 76 97 03 bb

CCM Nonce =00 50 30 f1 84 44 08 b5 03 97 76 e7 Oc

Plaintext Data =f8 ba la 55 d0 2f 85 ae 96 7b b6 2f b6 cd a8 eb 7e 78 al0 50
CCM MIC =78 45 ce 0b 16 £f9 76 23

-- Encrypted MPDU with FCS

08 48 c3 2c 0f d2 el 28 a5 7c 50 30 f1 84 44 08 ab ae a5 b8 fc ba 80 33 0c e7 00
20 76 97 03 b5 £3 dO a2 fe 9a 3d bf 23 42 a6 43 e4 32 46 e8 0Oc 3c 04
d0 19 78 45 ce Ob 16 £9 76 23 1d 99 f0 66

H.6.5 PRF test vectors

A set of test vectors are provided for each size of PRF function used in this subclause. See Table H.9
through Table H.12. The inputs to the PRF function are strings for key, prefix, and data. The length can be
any multiple of 8, but the values 192, 256, 384, and 512 are used in this subclause. The test vectors were
taken from IETF RFC 2202 with additional vectors added to test larger key and data sizes.

Table H.9—RSN PRF Test Vector 1

Test_case 1
Key 0b 0b Ob Ob O0b 0b 0b Ob Ob 0b 0b 0b Ob Ob Ob 0b 0b Ob Ob Ob
Prefix "prefix"
Data "Hi There"
Length 192
PRF-192 bc d4 c6 50 b3 0b 96 84 95 18 29 e0 d7 5f 9d 54
b8 62 17 5e d9 £0 06 06

Table H.10—RSN PRF Test Vector 2

Test case 2

Key 'Jefe!

Prefix "prefix-2"

Data "what do ya want for nothing?"

Length 256

PRF-256 47 c4 90 8e 30 c9 47 52 1la d2 0b e9 05 34 50 ec
be a2 3d 3a a6 04 b7 73 26 d8 b3 82 5f £7 47 5c

Copyright © 2004 IEEE. Al rights reserved. 173

IEEE
Std 802.11i-2004 LOCAL AND METROPOLITAN AREA NETWORKS

Table H.11—RSN PRF Test Vector 3

Test_case 3

Key da aa
da aa
da da 4aa 4aa daa da da daa da aa aa aa aa aa aa aa aa aa aa aa aa aa
da aa aa aa aa aa aa aa aa aa aa aa aa aa

Prefix "prefix-3"

Data "Test Using Larger Than Block-Size Key - Hash Key First"
Length 384

PRF-384 0a b6 ¢c3 3c cf 70 d0 d7 36 f£4 b0 4c 8a 73 73 25

55 11 ab ¢5 07 37 13 16 3b d0 b8 c9 ee b7 el 95
6f a0 66 82 0a 73 dd ee 3f 6d 3b d4 07 e0 68 2a

Table H.12—RSN PRF Test Vector 4

Test_case 4
Key 0b 0b Ob Ob 0b 0b Ob 0b 0b O0b Ob Ob 0b 0b Ob 0b 0b 0b Ob 0b
Prefix "prefix-4"
Data "Hi There Again"
Length 512
PRF-512 24 8c fb c5 32 ab 38 ff a4 83 c8 a2 e4 0b f1 70
eb 54 2a 2e 09 16 d7 bf 6d 97 da 2c 4c 5c a8 77
73 6c 53 a6 5b 03 fa 4b 37 45 ce 76 13 f6 ad 68
e0 e4 a7 98 b7 cf 69 1c 96 17 6f do 34 a5 9a 49

H.7 Key hierarchy test vectors

The test vectors in H.7.1 provide an example of PTK derivation for both CCMP and TKIP.

H.7.1 Pairwise key derivation

Pairwise keys are derived from the PMK, AA, SPA, SNonce, and ANonce. The values in Table H.13 are
used as input to the pairwise key derivation test vectors.

Table H.13—Sample values for pairwise key derivations

PMK 0d cO0 d6 eb 90 55 5e d6 41 97 56 b9 al 5e c3 e3
20 9b 63 df 70 7d d5 08 dl 45 81 £8 98 27 21 af

AA a0 al al a3 a4 a5

174 Copyright © 2004 IEEE. All rights reserved.

IEEE
AMENDMENT 6: MEDIUM ACCESS CONTROL (MAC) SECURITY ENHANCEMENTS Std 802.11i-2004

Table H.13—Sample values for pairwise key derivations (continued)

SPA b0 bl b2 b3 b4 b5

SNonce cO cl c2 c3 c4 c5 c6 c7 ¢c8 c9 d0 dl d2 d3 d4 d5
doe d7 d8 d9

ANonce el el e2 e3 e4 e5 e6 €7 e8 e9 f0 f1 f2 £3 f4 £5
fo £7 £8 f£9

H.7.1.1 CCMP pairwise key derivation

Using the values from Table H.13 for PMK, AA, SPA, SNonce, and ANonce, the key derivation process for
CCMP generates a temporal key as shown in Table H.14.

Table H.14—Sample derived TKIP temporal key (TK)

TK 8c b7 78 33 2e¢ 94 ac a6 d3 0b 89 cb e8 2a 9c a9

H.7.1.2 TKIP pairwise key derivation

Using the values from Table H.13 for PMK, AA, SPA, SNonce, and ANonce, the key derivation process for
TKIP generates the values shown in Table H.15.

Table H.15—Sample derived PTK

KCK Aa 7c fc 85 60 25 le 4b c6 87 e0 cb 8d 29 83 63
KEK Ba 53 16 3d f3 2a 86 38 f4 79 ab e3 4b fd 2b c8
TK 8c b7 78 33 2e 94 ac a6 d3 Ob 89 cb e8 2a 9c a9

36 4a ff bb ce 87 5f 5d f£f2 dd 58 41 c0 ed 2a 41

Authenticator Tx MIC key 36 4a ff bb ce 87 5f 5d

Supplicant Tx MIC key f2 dd 58 41 c0O ed 2a 41

Copyright © 2004 IEEE. Al rights reserved. 175

	Cover
	Local and Metropolitan Area Networks—Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Lay
	Introduction
	Participants
	Contents
	1. Overview
	1.2 Purpose

	2. Normative references
	3. Definitions
	4. Abbreviations and acronyms
	5. General description
	5.1 General description of the architecture
	5.1.1 How wireless LAN systems are different
	5.1.1.4 Interaction with other IEEE 802® layers
	5.1.1.5 Interaction with non-IEEE 802 protocols

	5.2 Components of the IEEE 802.11 architecture
	5.2.2 Distribution system (DS) concepts
	5.2.2.2 RSNA

	5.3 Logical service interfaces
	5.3.1 Station service (SS)

	5.4 Overview of the services
	5.4.2 Services that support the distribution service
	5.4.2.2 Association
	5.4.2.3 Reassociation

	5.4.3 Access control and confidentiality controlservices
	5.4.3.1 Authentication
	5.4.3.2 Deauthentication
	5.4.3.3 PrivacyConfidentiality
	5.4.3.4 Key management
	5.4.3.5 Data origin authenticity
	5.4.3.6 Replay detection

	5.6 Differences between ESS and IBSS LANs
	5.7 Message information contents that support the services
	5.7.5 PrivacyConfidentiality
	5.7.6 Authentication
	5.7.7 Deauthentication

	5.8 Reference model
	5.9 IEEE 802.11 and IEEE 802.1X
	5.9.1 IEEE 802.11 usage of IEEE 802.1X
	5.9.2 Infrastructure functional model overview
	5.9.2.1 AKM operations with AS
	5.9.2.2 Operations with PSK

	5.9.3 IBSS functional model description
	5.9.3.1 Key usage
	5.9.3.2 Sample IBSS 4-Way Handshakes
	5.9.3.3 IBSS IEEE 802.1X Example

	5.9.4 Authenticator-to-AS protocol
	5.9.5 PMKSA caching

	6. MAC service definition
	6.1 Overview of MAC services
	6.1.2 Security services
	6.1.4 MAC data service architecture

	7. Frame formats
	7.1 MAC frame formats
	7.1.3 Frame fields
	7.1.3.1 Frame Control field
	7.1.3.1.9 WEPProtected Frame field

	7.2 Format of individual frame types
	7.2.2 Data frames
	7.2.3 Management frames
	7.2.3.1 Beacon frame format
	7.2.3.4 Association Request frame format
	7.2.3.6 Reassociation Request frame format
	7.2.3.9 Probe Response frame format
	7.2.3.10 Authentication frame format

	7.3 Management frame body components
	7.3.1 Fixed fields
	7.3.1.4 Capability Information field
	7.3.1.7 Reason Code field
	7.3.1.9 Status Code field

	7.3.2 Information elements
	7.3.2.25 RSN information element
	7.3.2.25.1 Cipher suites
	7.3.2.25.2 AKM suites
	7.3.2.25.3 RSN capabilities
	7.3.2.25.4 PMKID

	8. Security
	8.1 Framework
	8.1.1 Security methods
	8.1.2 RSNA equipment and RSNA capabilities
	8.1.3 RSNA establishment
	8.1.4 RSNA assumptions and constraints (informative)

	8.2 Pre-RSNA security methods
	8.2.1 Wired equivalent privacy (WEP)
	8.2.1.1 WEP overview
	8.2.1.2 WEP MPDU format
	8.2.1.3 WEP state
	8.2.1.4 WEP procedures
	8.2.1.4.1 WEP ICV algorithm
	8.2.1.4.2 WEP encryption algorithm
	8.2.1.4.3 WEP seed construction
	8.2.1.4.4 WEP MPDU encapsulation
	8.2.1.4.5 WEP MPDU decapsulation

	8.2.2 Pre-RSNA authentication
	8.2.2.1 Overview
	8.2.2.2 Open System authentication
	8.2.2.2.1 Open System authentication (first frame)
	8.2.2.2.2 Open System authentication (final frame)

	8.2.2.3 Shared Key authentication
	8.2.2.3.1 Shared Key authentication (first frame)
	8.2.2.3.2 Shared Key authentication (second frame)
	8.2.2.3.3 Shared Key authentication (third frame)
	8.2.2.3.4 Shared Key authentication (final frame)
	8.2.2.3.5 Shared key MIB attributes

	8.3 RSNA data confidentiality protocols
	8.3.1 Overview
	8.3.2 Temporal Key Integrity Protocol (TKIP)
	8.3.2.1 TKIP overview
	8.3.2.1.1 TKIP encapsulation
	8.3.2.1.2 TKIP decapsulation

	8.3.2.2 TKIP MPDU formats
	8.3.2.3 TKIP MIC
	8.3.2.3.1 Motivation for the TKIP MIC
	8.3.2.3.2 Definition of the TKIP MIC

	8.3.2.4 TKIP countermeasures procedures
	8.3.2.4.1 TKIP countermeasures for an Authenticator
	8.3.2.4.2 TKIP countermeasures for a Supplicant

	8.3.2.5 TKIP mixing function
	8.3.2.5.1 S-Box
	8.3.2.5.2 Phase 1 Definition (Figure 43l)
	8.3.2.5.3 Phase 2 definition (see Figure 43m)

	8.3.2.6 TKIP replay protection procedures

	8.3.3 CTR with CBC-MAC Protocol (CCMP)
	8.3.3.1 CCMP overview
	8.3.3.2 CCMP MPDU format
	8.3.3.3 CCMP encapsulation
	8.3.3.3.1 PN processing
	8.3.3.3.2 Construct AAD
	8.3.3.3.3 Construct CCM nonce
	8.3.3.3.4 Construct CCMP header
	8.3.3.3.5 CCM originator processing

	8.3.3.4 CCMP decapsulation
	8.3.3.4.1 CCM recipient processing
	8.3.3.4.2 Decrypted CCMP MPDU
	8.3.3.4.3 PN and replay detection

	8.4 RSNA security association management
	8.4.1 Security associations
	8.4.1.1 Security association definitions
	8.4.1.1.1 PMKSA
	8.4.1.1.2 PTKSA
	8.4.1.1.3 GTKSA
	8.4.1.1.4 STAKeySA

	8.4.1.2 Security association life cycle
	8.4.1.2.1 Security association in an ESS
	8.4.1.2.2 Security association in an IBSS

	8.4.2 RSNA selection
	8.4.3 RSNA policy selection in an ESS
	8.4.3.1 TSN policy selection in an ESS

	8.4.4 RSNA policy selection in an IBSS
	8.4.4.1 TSN policy selection in an IBSS

	8.4.5 RSN management of the IEEE 802.1X Controlled Port
	8.4.6 RSNA authentication in an ESS
	8.4.6.1 Preauthentication and RSNA key management
	8.4.6.2 Cached PMKSAs and RSNA key management

	8.4.7 RSNA authentication in an IBSS
	8.4.8 RSNA key management in an ESS
	8.4.9 RSNA key management in an IBSS
	8.4.10 RSNA security association termination

	8.5 Keys and key distribution
	8.5.1 Key hierarchy
	8.5.1.1 PRF
	8.5.1.2 Pairwise key hierarchy
	8.5.1.3 Group key hierarchy

	8.5.2 EAPOL-Key frames
	8.5.2.1 STAKey Handshake for STA-to-STA link security
	8.5.2.2 EAPOL-Key frame notation

	8.5.3 4-Way Handshake
	8.5.3.1 4-Way Handshake Message 1
	8.5.3.2 4-Way Handshake Message 2
	8.5.3.3 4-Way Handshake Message 3
	8.5.3.4 4-Way Handshake Message 4
	8.5.3.5 4-Way Handshake implementation considerations
	8.5.3.6 Sample 4-Way Handshake (informative)
	8.5.3.7 4-Way Handshake analysis (informative)

	8.5.4 Group Key Handshake
	8.5.4.1 Group Key Handshake Message 1
	8.5.4.2 Group Key Handshake Message 2
	8.5.4.3 Group Key Handshake implementation considerations
	8.5.4.4 Sample Group Key Handshake (informative)

	8.5.5 STAKey Handshake
	8.5.5.1 STAKey Request message
	8.5.5.2 STAKey Message 1
	8.5.5.3 STAKey Message 2
	8.5.5.4 STAKey Message 1 and Message 2 to the initiating STA

	8.5.6 RSNA Supplicant key management state machine
	8.5.6.1 Supplicant state machine states
	8.5.6.2 Supplicant state machine variables
	8.5.6.3 Supplicant state machine procedures

	8.5.7 RSNA Authenticator key management state machine
	8.5.7.1 Authenticator state machine states
	8.5.7.1.1 Authenticator state machine: 4-Way Handshake (per STA)
	8.5.7.1.2 Authenticator state machine: Group Key Handshake (per STA)
	8.5.7.1.3 Authenticator state machine: Group Key Handshake (global)

	8.5.7.2 Authenticator state machine variables
	8.5.7.3 Authenticator state machine procedures

	8.5.8 Nonce generation (informative)

	8.6 Mapping EAPOL keys to IEEE 802.11 keys
	8.6.1 Mapping PTK to TKIP keys
	8.6.2 Mapping GTK to TKIP keys
	8.6.3 Mapping PTK to CCMP keys
	8.6.4 Mapping GTK to CCMP keys
	8.6.5 Mapping GTK to WEP-40 keys
	8.6.6 Mapping GTK to WEP-104 keys

	8.7 Per-frame pseudo-code
	8.7.1 WEP frame pseudo-code
	8.7.2 RSNA frame pseudo-code
	8.7.2.1 Per-MSDU Tx pseudo-code
	8.7.2.2 Per-MPDU Tx pseudo-code
	8.7.2.3 Per-MPDU Rx pseudo-code
	8.7.2.4 Per-MSDU Rx pseudo-code

	10. Layer management
	10.3 MLME SAP interface
	10.3.2 Scan
	10.3.2.2 MLME-SCAN.confirm
	10.3.2.2.2 Semantics of the service primitive

	10.3.6 Associate
	10.3.6.1 MLME-ASSOCIATE.request
	10.3.6.1.2 Semantics of the service primitive

	10.3.6.3 MLME-ASSOCIATE.indication
	10.3.6.3.2 Semantics of the service primitive

	10.3.7 Reassociate
	10.3.7.1 MLME-REASSOCIATE.request
	10.3.7.1.2 Semantics of the service primitive

	10.3.7.3 MLME-REASSOCIATE.indication
	10.3.7.3.2 Semantics of the service primitive

	10.3.17 SetKeys
	10.3.17.1 MLME-SETKEYS.request
	10.3.17.1.1 Function
	10.3.17.1.2 Semantics of the service primitive
	10.3.17.1.3 When generated
	10.3.17.1.4 Effect of receipt

	10.3.17.2 MLME-SETKEYS.confirm
	10.3.17.2.1 Function
	10.3.17.2.2 Semantics of the service primitive
	10.3.17.2.3 When generated
	10.3.17.2.4 Effect of receipt

	10.3.18 DeleteKeys
	10.3.18.1 MLME-DELETEKEYS.request
	10.3.18.1.1 Function
	10.3.18.1.2 Semantics of the service primitive
	10.3.18.1.3 When generated
	10.3.18.1.4 Effect of receipt

	10.3.18.2 MLME-DELETEKEYS.confirm
	10.3.18.2.1 Function
	10.3.18.2.2 Semantics of the service primitive
	10.3.18.2.3 When generated
	10.3.18.2.4 Effect of receipt

	10.3.19 MIC (Michael) failure event
	10.3.19.1 MLME-MICHAELMICFAILURE.indication
	10.3.19.1.1 Function
	10.3.19.1.2 Semantics of the service primitive
	10.3.19.1.3 When generated
	10.3.19.1.4 Effect of receipt

	10.3.20 EAPOL
	10.3.20.1 MLME-EAPOL.request
	10.3.20.1.1 Function
	10.3.20.1.2 Semantics of the service primitive
	10.3.20.1.3 When generated
	10.3.20.1.4 Effect of receipt

	10.3.20.2 MLME-EAPOL.confirm
	10.3.20.2.1 Function
	10.3.20.2.2 Semantics of the service primitive
	10.3.20.2.3 When generated
	10.3.20.2.4 Effect of receipt

	10.3.21 MLME-STAKEYESTABLISHED
	10.3.21.1 MLME-STAKEYESTABLISHED.indication
	10.3.21.1.1 Function
	10.3.21.1.2 Semantics of the service primitive
	10.3.21.1.3 When generated
	10.3.21.1.4 Effect of receipt

	10.3.22 SetProtection
	10.3.22.1 MLME-SETPROTECTION.request
	10.3.22.1.1 Function
	10.3.22.1.2 Semantics of the service primitive
	10.3.22.1.3 When generated
	10.3.22.1.4 Effect of receipt

	10.3.22.2 MLME-SETPROTECTION.confirm
	10.3.22.2.1 Function
	10.3.22.2.2 Semantics of the service primitive
	10.3.22.2.3 When generated
	10.3.22.2.4 Effect of receipt

	10.3.23 MLME-PROTECTEDFRAMEDROPPED
	10.3.23.1 MLME- PROTECTEDFRAMEDROPPED.indication
	10.3.23.1.1 Function
	10.3.23.1.2 Semantics of the service primitive
	10.3.23.1.3 When generated
	10.3.23.1.4 Effect of receipt

	11. MAC sublayer management entity
	11.3 Association and reassociation
	11.3.1 Authentication-originating STA
	11.3.2 Authentication-destination STA
	11.3.3 Deauthentication-originating STA
	11.3.4 Deauthentication-destination STA

	11.4 Association, reassociation, and disassociation
	11.4.1 STA association procedures
	11.4.2 AP association procedures
	11.4.3 STA reassociation procedures
	11.4.4 AP reassociation procedures
	11.4.5 STA disassociation procedures
	11.4.6 AP disassociation procedures

	Annex A (informative) Protocol Implementation Conformance Statements (PICS)
	A.4 PICS proforma-IEEE Std 802.11, 1999 Edition
	A.4.4 MAC protocol

	Annex C (normative) Formal description of MAC operation
	C.3 State machines for MAC stations
	C.4 State machines for MAC AP

	Annex D (normative) ASN.1 encoding of the MAC and PHY MIB
	Annex E (informative) Bibliography
	E.1 General

	Annex H RSNA reference implementations and test vectors
	H.1 TKIP temporal key mixing function reference implementation and test vector
	H.1.1 Test vectors

	H.2 Michael reference implementation and test vectors
	H.2.1 Michael test vectors
	H.2.2 Sample code for Michael

	H.3 PRF reference implementation and test vectors
	H.3.1 PRF reference code
	H.3.2 PRF test vectors

	H.4 Suggested pass-phrase-to-PSK mapping
	H.4.1 Introduction
	H.4.2 Reference implementation
	H.4.3 Test vectors

	H.5 Suggestions for random number generation
	H.5.1 Software sampling
	H.5.2 Hardware-assisted solution

	H.6 Additional test vectors
	H.6.1 Notation
	H.6.2 WEP encapsulation
	H.6.3 TKIP test vector
	H.6.4 CCMP test vector
	H.6.5 PRF test vectors

	H.7 Key hierarchy test vectors
	H.7.1 Pairwise key derivation

	Figure 11- Portion of the ISO/IEC basic reference model covered in this standard
	Figure 11a- Establishing the IEEE 802.11 association
	Figure 11b- IEEE 802.1X EAP authentication
	Figure 11c- Establishing pairwise and group keys
	Figure 11d- Delivery of subsequent group keys
	Figure 11e- Sample 4-Way Handshakes in an IBSS
	Figure 11f- Example using IEEE 802.1X authentication
	Figure 11g- MAC data plane architecture
	Figure 13- Frame Control field
	Figure 46ta- RSN information element format
	Figure 46tb- Suite selector format
	Figure 46tc- RSN Capabilities field format
	Figure 43- Construction of expanded WEP MPDU
	Figure 43a- WEP encapsulation block diagram
	Figure 43b- WEP decapsulation block diagram
	Figure 43c- TKIP encapsulation block diagram
	Figure 43d- TKIP decapsulation block diagram
	Figure 43e- Construction of expanded TKIP MPDU
	Figure 43f- TKIP MIC relation to IEEE 802.11 processing (informative)
	Figure 43g- TKIP MIC processing format
	Figure 43h- Michael message processing
	Figure 43i- Michael block function
	Figure 43j- Authenticator MIC countermeasures
	Figure 43k- Supplicant MIC countermeasures
	Figure 43l- Phase 1 key mixing
	Figure 43m- Phase 2 key mixing
	Figure 43n- Expanded CCMP MPDU
	Figure 43o- CCMP encapsulation block diagram
	Figure 43p- AAD construction
	Figure 43q- Nonce construction
	Figure 43r- CCMP decapsulation block diagram
	Figure 43s- Pairwise key hierarchy
	Figure 43t- Group key hierarchy (informative)
	Figure 43u- EAPOL-Key frame
	Figure 43v- Key Information bit layout
	Figure 43w- KDE format
	Figure 43x- GTK KDE format
	Figure 43y- STAKey KDE format
	Figure 43z- MAC address KDE format
	Figure 43aa- PMKID KDE format
	Figure 43ab- STAKey message exchange
	Figure 43ac- Sample 4-Way Handshake
	Figure 43ad- Sample Group Key Handshake
	Figure 43ae- RSNA Supplicant key management state machine
	Figure 43af- Authenticator state machines, part 1
	Figure 43ag- Authenticator state machines, part 2
	Figure 43ah- Authenticator state machines, part 3
	Figure 43ai- Authenticator state machines, part 4
	Figure H.1- Randomness generating circuit
	Table 5- Beacon frame body
	Table 7- Association Request frame body
	Table 9- Reassociation Request frame body
	Table 12- Probe Response frame body
	Table 18- Reason codes
	Table 19- Status codes
	Table 20- Element IDs
	Table 20da- Cipher suite selectors
	Table 20db- Cipher suite usage
	Table 20dc- AKM suite selectors
	Table 20dd- PTKSA/GTKSA/STAKeySA replay counters usage
	Table 20f- Cipher suite key lengths
	Table 20g- Key RSC field
	Table 20h- KDE
	Table H.1- Test vectors for block function
	Table H.2- Test vectors for Michael
	Table H.3- Notation example
	Table H.4- Sample plaintext MPDU
	Table H.5- RC4 encryption
	Table H.6- Expanded MPDU after WEP encapsulation
	Table H.7- Sample TKIP parameters
	Table H.8- Sample plaintext and ciphertext MPDUs, using parameter from Table H.7
	Table H.9- RSN PRF Test Vector 1
	Table H.10- RSN PRF Test Vector 2
	Table H.11- RSN PRF Test Vector 3
	Table H.12- RSN PRF Test Vector 4
	Table H.13- Sample values for pairwise key derivations
	Table H.14- Sample derived TKIP temporal key (TK)
	Table H.15- Sample derived PTK

